

THE CITY OF SAN DIEGO

NORTH CITY WATER RECLAMATION PLANT

ANNUAL MONITORING REPORT 2009

(SDRWQCB Order No. 97-03)

Environmental Monitoring and Technical Services
Public Utilities Department
2392 Kincaid Road * Mail Station 45A * San Diego, CA 92101
Tel (619) 758-2300 Fax (619) 758-2309

THE CITY OF SAN DIEGO

January 29, 2010

Mr. David W. Gibson, Executive Officer California Regional Water Quality Control Board, San Diego Region 9174 Sky Park Court, Suite 100 San Diego, CA 92123

Attn: Ground Water Unit

Dear Mr. Gibson:

Enclosed is the Annual Monitoring report for 2009 for the City of San Diego North City Water Reclamation Plant, as is specified in Monitoring and Reporting Program No. 97-03 for the production and purveyance of reclaimed water.

In addition, results of analyses performed on North City samples, as part of the Metropolitan Wastewater system-wide Quarterly Sludge Project, a portion of the City's Pretreatment Program, have also been included.

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief,

Page 2 Mr. David W. Gibson, Executive Officer January 29, 2010

true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Sincerely,

Steve Meyer

Deputy Public Utilities Director

SWM/lnk

cc:

Jim Barrett, Director of Public Utilities

Ann Sasaki, Assitant Public Utilities Director, Wastewater Operations Branch

EPA Region 9

San Diego County Department of Environmental Health,

Hazardous Materials Division

San Diego County Department of Environmental Health,

Land Use Division

Distribution

File

INTRODUCTION:

The purpose of this document is to both meet the requirements of Monitoring and Reporting Program and to provide a reference source and resource tools for both regulatory agencies and City staff and their consultants. To this end, the past year's data is presented in tabular and graphical form. To make this document more useful we have included operational data and background analyses.

Notes on data conventions and analyses:

It should be noted that for averaging purposes "less than" and "not detected" (nd) values were treated as zeros. In many parts of the report zero values are found. Our computer system reads "less than" values as zero for summaries, as well as in computing averages. In those areas where zeros are found the reader can find appropriate Method Detection Limit (MDL) in the table of data. Because "less than" values are averaged as zero a number of the summary table values are lower than the detection limits.

The data tables may also contain values expressed as a <X (less than) with some number X. For example, the Diazinon value for PLE on March 10, 1998 (in the table below) is reported as <2.4 ug/L (see the below table); this indicates that one or more, of two or more, determinations was above the MDL, while the average was below the MDL. This value is still treated as a zero for averaging and other summary calculations. Note also, that sub-totals and totals consisting of multiple analytes (see below) are also reported as "<X", where the "X" value is the highest MDL for the particular group of analytes. This has the same significance as a "ND" or not detected.

Organophosphorus Pesticides								
			PLE	PLE	PLE	PLR	PLR	PLR
			10-MAR-1998	27-APR-1998	10-SEP-1998	10-MAR-1998	27-APR-1998	10-SEP-1998
	MDL	Units	0311980006	0428980006	9809107494	0311980007	0428980007	9809107515
=======================================		=====						
Demeton O	1.69	UG/L	ND	ND	ND	ND	ND	ND
Demeton S	1.82	UG/L	ND	ND	ND	ND	ND	ND
Diazinon	2.41	UG/L	<2.4	ND	ND	<2.4	ND	ND
Guthion	7.1	UG/L	ND	ND	ND	ND	ND	ND
Malathion	2.98	UG/L	ND	ND	ND	ND	ND	ND
Parathion	2.83	UG/L	ND	ND	ND	ND	ND	ND
mbi anh anh ann Partiri da		=====						
Thiophosphorus Pesticides			<7.1	<7.1	<7.1	<7.1	<7.1	<7.1
Demeton -O, -S			<1.8	<0.2	<0.2	<1.8	<0.2	<0.2
Total Organophosphorus Pestic	cides		<7.1	<7.1	<7.1	<7.1	<7.1	<7.1

A further limitation, that the user of this data should note, is that confidence in the results of an analysis is heavily dependent upon the concentration relative to the Method Detection Limit (MDL). For the most part our detection limits have been established using the procedure in 40 CFR, part 136. This statistical basis for the MDL results in a defined statistical confidence (at the 99% Confidence Interval) of essentially ±100% of the result at or near the MDL. Only at concentrations approximately 5 times the MDL is the confidence interval at ±20% relative. While the precision of our methods generally ranges from 2-3 significant figures, the above limitations of confidence should always be considered.

Laboratories Contributing Results used in this report.

Metropolitan Wastewater Chemistry Laboratory

(EPA Lab Code: CA00380, ELAP Certificate: 1609) 5530 Kiowa Drive La Mesa, CA 91942 (619)668-3212

All results except those listed below.

Point Loma Wastewater Chemistry Laboratory

(EPA Lab Code: CA01435, ELAP Certificate: 2474) 1902 Gatchell Road San Diego, CA 92106 (619)221-8765

Process control analyses and wet methods for the plant.

North City Wastewater Chemistry Laboratory

(EPA Lab Code: CA01436, ELAP Certificate: 2477) 4949 Eastgate Mall San Diego, CA 92121 (858)824-6009

Process control analyses and wet methods for the plant.

Metro Biosolids Center Chemistry Laboratory

(EPA Lab Code: CA01437, ELAP Certificate: 2478) 5240 Convoy Street San Diego, CA 92111 (858)614-5834

Process control analyses and wet methods for the plant.

City of San Diego - Water Quality Laboratory

(EPA Lab Code: CA00080, ELAP Certificate: 1058) 5530 Kiowa Drive La Mesa, CA 91942 (619)668-3237

Total Organic Carbon in Wastewater

City of San Diego - Marine Microbiology and Vector Management (EPA LabCode: CA01393,

ELAP Certificate: 2185) 2392 Kincaid Road San Diego, CA 92101 (619)758-2312 *Microbiology*

Test America Richland (EPA Lab Code: WA00023, ELAP Certificate: 2425) 2800 George Washington Way Richland, WA 99354-1613 (509)375-3131

Gross Alpha/Beta Radioactivity

Graphs:

Graphs of monthly averages show the arithmetic mean of the determinations made in the calendar month without weighting for variation in frequency or number of determinations. If the mean is less than the MDL (i.e. 'nd' or '<X'), the expressed graphical value is zero (0).

Terms:

North City Water Reclamation Plant Source Codes

N01-PEN Penasquitos Influent Pump Station

N01 PS_INF Pump Station 64 Influent

N30-DFE Disinfected Final Effluent

N15 AE Aeration Effluent

N34 REC WATER Compliance point . Reclaimed water distributed to customers,

downstream of EDR unit.

N25 FES Filter Effluent Structure

N10 EFF Primary Effluent

N10-PSP COMB Combined Primary Sludge Pump

N15-WAS HCP Waste Activated Sludge (High Capacity Pump)
N15-WAS LCP Waste Activated Sludge (Low Capacity Pump)

North City Water Reclamation Plant Operator Certification

Name	Grade	Cert. No.	Expiration Date
North City Plant Superinte Molas, Ernesto	ndent V	V-7227	12/31/2011
North City Sr. Operations Spruett, Sam	<u>Supervisor</u> V	V-7791	06/30/2011
North City Operations Sup Cozad, John Featherston, Robert Relph, Robert	<u>ervisors</u> III III III	III-7138 III-7534 III-6742	12/31/2011 06/30/2011 12/31/2010
North City Operators Hill, Cardell Todd, Terry Castillo, Jose Marlow, Dave Jacques, Richie Saulog, Noel	II III III V II	II-4041 III-9833 III-9849 V-10216 II-27921 II-10299	06/30/2011 12/31/2011 06/30/2011 12/31/2010 12/31/2010 12/31/2010

NCWRP Sampling Schematic

North City Water Reclamation Plant 2009 Flows

Monthly Totals

						110116	niy rocai	-					
	Penas-		Dlant	Disinfect			FES			WAS	WAS		Total Sludge
	quitos	Pump 64	Drain		Reclaim		Filter	Primary	Primary	Hi Cap	Lo Cap	Filter	Flow
			Influent	Effluent		N Return			Sludge	sludge		Backwash	to MBC
Month	(MGD)	(MGD)	(MGD)	(MGD)	(MGD)	(MGD)	(MGD)	(MGD)	(MGD)	(MGD)	(MGD)	(MGD)	(MGD)
	(1.05)	(1105)	(1.65)	(1.65)	(1.05)	(1.05)	(1.05)	(1.05)				(1.65)	
01	155.5	546.5	48.1	44.4	73.4	511.03	146.64	705.25	24.24	.00	11.01	2.78	39.20
02	224.3	418.2	39.7	39.5	40.9	512.76	114.79	650.18	19.26	.00	9.22	3.78	29.81
03	213.4	502.8	72.9	38.6	101.9	496.35	193.24	709.06	26.64	.00	11.22	4.63	31.74
04	219.6	481.3	63.6	40.1	141.2	415.46	236.49	685.08	25.87	1.49	10.06	6.72	37.22
05	204.5	509.9	56.0	42.7	190.3	415.10	301.73	704.98	27.27	.00	10.41	8.92	34.07
06	174.4	491.1	27.6	53.3	163.9	409.50	281.78	679.36	25.27	.00	10.64	8.19	35.71
07	158.0	537.7	38.6	52.5	227.4	393.51	353.84	711.15	27.25	3.21	10.10	8.49	35.14
08	251.8	491.4	25.8	50.1	214.1	396.84	347.88	710.45	27.17	.00	11.40	6.47	38.32
09	224.1	500.6	25.0	44.6	175.4	445.60	293.33	696.34	28.60	.00	10.29	11.39	37.90
10	228.5	487.6	41.2	55.0	175.8	407.83	302.07	703.04	28.48	.00	11.28	6.45	34.92
11	203.6	464.8	43.1	51.5	127.6	448.10	252.58	669.14	28.59	1.10	10.31	6.72	35.05
12	232.6	481.2	44.7	49.2	40.6	552.17	145.96	709.50	28.08	.00	10.28	4.65	33.07
Average	207.5	492.8	43.9	46.8	139.4	450.35	247.53	694.46	26.39	.48	10.52	6.60	35.18
Total	2490.3	5913.1	526.3	561.4	1672.3	5404.25	2970.33	8333.53	316.72	5.80	126.22	79.19	422.15
							_						
						Dail	y Average	S					Total
	Pon as -		Plant	Disinfoct		Dail		S		МАС	MAC		Total
	Penas-	Dump 64		Disinfect	Poclaim	Dail	FES		Pnimany	WAS	WAS	Eil+on	Sludge
	quitos	Pump 64	Drain	Final	Reclaim		FES Filter	Primary	Primary	Hi Cap	Lo Cap	Filter	Sludge Flow
Month	quitos Influent	Influent	Drain Influent	Final Effluent	Water	N Return	FES Filter Effluent	Primary Effluent	Sludge	Hi Cap sludge	Lo Cap sludge	Backwash	Sludge Flow to MBC
Month	quitos		Drain	Final			FES Filter	Primary	,	Hi Cap	Lo Cap		Sludge Flow
Month 	quitos Influent	Influent	Drain Influent	Final Effluent	Water	N Return	FES Filter Effluent	Primary Effluent	Sludge	Hi Cap sludge	Lo Cap sludge	Backwash	Sludge Flow to MBC
	quitos Influent (MGD)	Influent (MGD)	Drain Influent (MGD)	Final Effluent (MGD)	Water (MGD)	N Return (MGD)	FES Filter Effluent (MGD)	Primary Effluent (MGD)	Sludge (MGD)	Hi Cap sludge (MGD)	Lo Cap sludge (MGD)	Backwash (MGD)	Sludge Flow to MBC (MGD)
01	quitos Influent (MGD) 	Influent (MGD) 17.6	Drain Influent (MGD) 1.6 1.4	Final Effluent (MGD) 	Water (MGD) 2.4	N Return (MGD) 16.48	FES Filter Effluent (MGD)	Primary Effluent (MGD)	Sludge (MGD) 	Hi Cap sludge (MGD) 	Lo Cap sludge (MGD) 	Backwash (MGD) 	Sludge Flow to MBC (MGD) 1.26
01 02	quitos Influent (MGD) 5.0 8.0	Influent (MGD) 17.6 14.9	Drain Influent (MGD) 1.6 1.4	Final Effluent (MGD) 1.4 1.4	Water (MGD) 2.4 1.5	N Return (MGD) 16.48 18.31	FES Filter Effluent (MGD) 4.73 4.10	Primary Effluent (MGD) 22.75 23.22	Sludge (MGD) .78 .69	Hi Cap sludge (MGD) .00	Lo Cap sludge (MGD) .36	Backwash (MGD) .09 .14	Sludge Flow to MBC (MGD) 1.26 1.06
01 02 03	quitos Influent (MGD) 5.0 8.0 6.9 7.3 6.6	Influent (MGD) 17.6 14.9 16.2	Drain Influent (MGD) 1.6 1.4 2.4 2.1 1.8	Final Effluent (MGD) 1.4 1.4 1.2	Water (MGD) 2.4 1.5 3.3	N Return (MGD) 16.48 18.31 16.01	FES Filter Effluent (MGD) 4.73 4.10 6.23	Primary Effluent (MGD) 22.75 23.22 22.87	Sludge (MGD) 	Hi Cap sludge (MGD) .00 .00	Lo Cap sludge (MGD) .36 .33	Backwash (MGD) .09 .14 .15	Sludge Flow to MBC (MGD) 1.26 1.06 1.02
01 02 03 04	quitos Influent (MGD) 5.0 8.0 6.9 7.3 6.6 5.8	Influent (MGD) 17.6 14.9 16.2 16.0	Drain Influent (MGD) 1.6 1.4 2.4 2.1	Final Effluent (MGD) 1.4 1.4 1.2 1.3	Water (MGD) 2.4 1.5 3.3 4.7	N Return (MGD) 16.48 18.31 16.01 13.85	FES Filter Effluent (MGD) 4.73 4.10 6.23 7.88	Primary Effluent (MGD) 22.75 23.22 22.87 22.84	Sludge (MGD) 	Hi Cap sludge (MGD) .00 .00 .00	Lo Cap sludge (MGD) .36 .33 .36	Backwash (MGD) .09 .14 .15	Sludge Flow to MBC (MGD) 1.26 1.06 1.02 1.24
01 02 03 04 05	quitos Influent (MGD) 5.0 8.0 6.9 7.3 6.6	Influent (MGD) 17.6 14.9 16.2 16.0 16.4	Drain Influent (MGD) 1.6 1.4 2.4 2.1 1.8	Final Effluent (MGD) 1.4 1.4 1.2 1.3	Water (MGD) 2.4 1.5 3.3 4.7 6.1	N Return (MGD) 16.48 18.31 16.01 13.85 13.39	FES Filter Effluent (MGD) 4.73 4.10 6.23 7.88 9.73	Primary Effluent (MGD) 22.75 23.22 22.87 22.84 22.74	Sludge (MGD) 	Hi Cap sludge (MGD) .00 .00 .00 .05	Lo Cap sludge (MGD) .36 .33 .36 .34	Backwash (MGD) .09 .14 .15 .22 .29	Sludge Flow to MBC (MGD) 1.26 1.06 1.02 1.24 1.10
01 02 03 04 05	quitos Influent (MGD) 5.0 8.0 6.9 7.3 6.6 5.8 5.1 8.1	Influent (MGD) 17.6 14.9 16.2 16.0 16.4 17.3 15.9	Drain Influent (MGD) 1.6 1.4 2.4 2.1 1.8 .9 1.2	Final Effluent (MGD) 1.4 1.4 1.2 1.3 1.4 1.8	Water (MGD) 2.4 1.5 3.3 4.7 6.1 5.5	N Return (MGD) 16.48 18.31 16.01 13.85 13.39 13.65	FES Filter Effluent (MGD) 4.73 4.10 6.23 7.88 9.73 9.39	Primary Effluent (MGD) 22.75 23.22 22.87 22.84 22.74 22.65	Sludge (MGD) 	Hi Cap sludge (MGD) 	Lo Cap sludge (MGD) .36 .33 .36 .34 .34	Backwash (MGD) .09 .14 .15 .22 .29 .27 .27	Sludge Flow to MBC (MGD) 1.26 1.06 1.02 1.24 1.10 1.19
01 02 03 04 05 06	quitos Influent (MGD) 5.0 8.0 6.9 7.3 6.6 5.8 5.1 8.1 7.5	Influent (MGD) 17.6 14.9 16.2 16.0 16.4 17.3 15.9 16.7	Drain Influent (MGD) 1.6 1.4 2.4 2.1 1.8 .9 1.2 .8 .8	Final Effluent (MGD)	Water (MGD) 2.4 1.5 3.3 4.7 6.1 5.5 7.3	N Return (MGD) 16.48 18.31 16.01 13.85 13.39 13.65 12.69 12.80 14.85	FES Filter Effluent (MGD) 4.73 4.10 6.23 7.88 9.73 9.39 11.41 11.22 9.78	Primary Effluent (MGD) 22.75 23.22 22.87 22.84 22.74 22.65 22.94 22.92 23.21	Sludge (MGD) 	Hi Cap sludge (MGD) .00 .00 .00 .05 .00 .00 .10 .00	Lo Cap sludge (MGD)	Backwash (MGD) .09 .14 .15 .22 .29 .27 .27 .21	Sludge Flow to MBC (MGD) 1.26 1.06 1.02 1.24 1.10 1.19 1.13 1.24 1.26
01 02 03 04 05 06 07 08 09	quitos Influent (MGD) 5.0 8.0 6.9 7.3 6.6 5.8 5.1 8.1 7.5 7.4	Influent (MGD) 17.6 14.9 16.2 16.0 16.4 17.3 15.9 16.7	Drain Influent (MGD) 1.6 1.4 2.4 2.1 1.8 .9 1.2 .8 .8 1.3	Final Effluent (MGD) 1.4 1.4 1.2 1.3 1.4 1.8 1.7 1.6 1.5 1.8	Water (MGD) 2.4 1.5 3.3 4.7 6.1 5.5 7.3 6.9 5.8 5.7	N Return (MGD) 16.48 18.31 16.01 13.85 13.39 13.65 12.69 12.80 14.85 13.16	FES Filter Effluent (MGD) 4.73 4.10 6.23 7.88 9.73 9.39 11.41 11.22 9.78 9.74	Primary Effluent (MGD) 22.75 23.22 22.87 22.84 22.74 22.65 22.94 22.92 23.21 22.68	Sludge (MGD) 	Hi Cap sludge (MGD) .00 .00 .00 .05 .00 .00 .10 .00	Lo Cap sludge (MGD)	Backwash (MGD) .09 .14 .15 .22 .29 .27 .27 .21 .38 .21	Sludge Flow to MBC (MGD) 1.26 1.06 1.02 1.24 1.10 1.19 1.13 1.24 1.26 1.13
01 02 03 04 05 06 07 08	quitos Influent (MGD) 5.0 8.0 6.9 7.3 6.6 5.8 5.1 8.1 7.5 7.4 6.8	Influent (MGD) 17.6 14.9 16.2 16.0 16.4 17.3 15.9 16.7 15.7	Drain Influent (MGD) 1.6 1.4 2.4 2.1 1.8 .9 1.2 .8 .8 1.3 1.4	Final Effluent (MGD) 1.4 1.4 1.2 1.3 1.4 1.8 1.7 1.6 1.5 1.8 1.7	Water (MGD) 2.4 1.5 3.3 4.7 6.1 5.5 7.3 6.9 5.8 5.7 4.3	N Return (MGD) 16.48 18.31 16.01 13.85 13.39 13.65 12.69 12.80 14.85 13.16 14.94	FES Filter Effluent (MGD) 4.73 4.10 6.23 7.88 9.73 9.39 11.41 11.22 9.78 9.74 8.42	Primary Effluent (MGD) 22.75 23.22 22.87 22.84 22.74 22.65 22.94 22.92 23.21 22.68 22.30	Sludge (MGD) 	Hi Cap sludge (MGD) .00 .00 .00 .05 .00 .00 .10 .00	Lo Cap sludge (MGD)	Backwash (MGD) .09 .14 .15 .22 .29 .27 .27 .21 .38 .21	Sludge Flow to MBC (MGD) 1.26 1.06 1.02 1.24 1.10 1.19 1.13 1.24 1.26 1.13
01 02 03 04 05 06 07 08 09	quitos Influent (MGD) 5.0 8.0 6.9 7.3 6.6 5.8 5.1 8.1 7.5 7.4	Influent (MGD) 17.6 14.9 16.2 16.0 16.4 17.3 15.9 16.7	Drain Influent (MGD) 1.6 1.4 2.4 2.1 1.8 .9 1.2 .8 .8 1.3	Final Effluent (MGD) 1.4 1.4 1.2 1.3 1.4 1.8 1.7 1.6 1.5 1.8	Water (MGD) 2.4 1.5 3.3 4.7 6.1 5.5 7.3 6.9 5.8 5.7	N Return (MGD) 16.48 18.31 16.01 13.85 13.39 13.65 12.69 12.80 14.85 13.16	FES Filter Effluent (MGD) 4.73 4.10 6.23 7.88 9.73 9.39 11.41 11.22 9.78 9.74	Primary Effluent (MGD) 22.75 23.22 22.87 22.84 22.74 22.65 22.94 22.92 23.21 22.68	Sludge (MGD) 	Hi Cap sludge (MGD) .00 .00 .00 .05 .00 .00 .10 .00	Lo Cap sludge (MGD)	Backwash (MGD) .09 .14 .15 .22 .29 .27 .27 .21 .38 .21	Sludge Flow to MBC (MGD) 1.26 1.06 1.02 1.24 1.10 1.19 1.13 1.24 1.26 1.13

North City Water Reclamation Plant (N34-REC WATER) Recycled Water Chlorine Report N34-REC WATER is compliance point for reclaimed water Minimum Daily 1 Maximum Daily 2 Time ³ Operations 2009 Chlorine Residual Chlorine Residual CT less than 450 mg-min/l Date (mg/L) (mg/L) (min) 5.4 10.68 0 Jan 5.1 0 Feb 13.16 Mar 2.47 15.99 0 Apr 2.81 14.81 0 3.52 5.47 0 May 2.69 6.50 0 Jun Jul 3.89 6.89 0 0 Aug 3.70 6.04 Sep 2.31 5.72 0 Oct 3.56 6.69 0 Nov 2.23 5.78 0 Dec 3.47 13.48 0 Total: 0 1 Minimum Daily value is the average recorded for the month.

North City Water Reclamation Plant Recycled Water Coliform Report

Operations 2009	Tot. Coliform (7-day median)	
Date	(MPN)	
Jan	<1.8	
Feb	<1.8	
Mar	<1.8	
Apr	<1.8	
May	<1.8	
Jun	<1.8	
Jul	<1.8	
Aug	<1.8	
Sep	<1.8	
Oct	<1.8	
Nov	<1.8	
Dec	<1.8	

² Maximum Daily value is the average recorded value for the month

³ Total time for the month.

North City Water Reclamation Plant

Recycled Water Turbidity Report

Data from in-plant meter 4

	Average Daily	Minimum Daily ¹	Maximum Daily ²	Time Over ³
Operations 2009	Turbidity	Turbidity	Turbidity	5 NTU's
Date	(NTU)	(NTU)	(NTU)	(MINUTES)
Jan	0.46	0.36	0.72	0.00
Feb	0.58	0.48	0.88	0.00
Mar	0.46	0.34	0.82	0.00
Apr	0.75	0.59	1.09	0.00
May	0.54	0.45	0.86	0.00
Jun	0.43	0.36	0.72	0.00
Jul	0.46	0.36	0.92	0.00
Aug	0.57	0.47	0.86	0.00
Sep	0.58	0.49	0.79	0.00
Oct	0.41	0.33	0.68	0.00
Nov	0.53	0.41	1.11	0.00
Dec	0.63	0.48	1.02	0.00
Average:	0.56		Total:	0.00
4 Minimum Dailees	in the gueroge recorded tor th			

¹ Minimum Daily value is the average recorded for the month.

² Maximum Daily value is the average recorded value for the month.

³ Lotal time for the month

⁴ Compliance monitoring point, values taken from the combined filter effluent turbidity meter (N25AI1673) or (N25AI1674), located at meter room of Area 25 (Tertiary Filter Structures)

North City Reclamation Plant Monthly Monitoring Report Annual Monitoring Report

2009
(N34-REC) Reclaimed Water - Daily Parameters

	Biochemical Oxygen Demand	Total Dissolved Solids	Total Suspended Solids	Volatile Suspended Solids	pH Grab
MDL/Units	2 MG/L	28 MG/L	1.4 MG/L	1.6 MG/L	(pH)
=========	========	========	========	========	========
JANUARY -2009	<2	948	ND	ND	7.07
FEBRUARY -2009	<2	952	ND	ND	7.13
MARCH -2009	<2	932	<1.4	<1.6	7.08
APRIL -2009	<2	956	ND	ND	7.08
MAY -2009	<2	947	ND	ND	7.12
JUNE -2009	<2	909	ND	ND	7.03
JULY -2009	ND	922	ND	ND	7.06
AUGUST -2009	<2	894	ND	ND	7.13
SEPTEMBER-2009	ND	899	ND	ND	7.17
OCTOBER -2009	ND	855	<1.4	ND	7.15
NOVEMBER -2009	<2	865	<1.4	<1.6	7.12
DECEMBER -2009	<2	893	ND	ND	7.13
==========	========	========	========		========
Average:	0	914	0	0	7.11
Maximum:	0	956	0	0	7.17
Minimum:	0	855	0	0	7.03

(NO1-PS-INF) Pump Station 64 Influent - Daily Parameters

	Biochemical	Total	Total	Volatile		
	0xygen	Dissolved	Suspended	Suspended	Turbidity	рН
	Demand	Solids	Solids	Solids	-	COMPOSITE
Sample Date:	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(NTU)	(pH)
=======================================	========		========	========	========	=======
JANUARY -2009	201	1150	216	195	108	7.57
FEBRUARY -2009	184	1140	189	170	103	7.57
MARCH -2009	251	1170	219	195	123	7.53
APRIL -2009	223	1200	208	188	111	7.57
MAY -2009	214	1170	219	197	120	7.63
JUNE -2009	237	1140	229	205	133	7.67
JULY -2009	225	1130	225	202	125	7.62
AUGUST -2009	217	1090	221	197	134	7.62
SEPTEMBER-2009	215	1100	230	206	117	7.62
OCTOBER -2009	233	1060	196	175	134	7.64
NOVEMBER -2009	245	1120	228	203	128	7.66
DECEMBER -2009	208	1160	209	187	120	7.66
=======================================	========		========	========		=======
Average:	221	1136	216	193	121	7.61
Maximum:	251	1200	230	206	134	7.67
Minimum:	184	1060	189	170	103	7.53

All samples are 24-hour composite.

NA= Not Analyzed NS= Not Sampled ND= Not Detected

North City Reclamation Plant Annual Monitoring Report Annual Monitoring Report

2009
(NO1-PEN) Penasquitos Pump Station Influent - Daily Parameters

Sample Date:	Biochemical Oxygen Demand (mg/L)	Total Dissolved Solids (mg/L)	Total Suspended Solids (mg/L)	Volatile Suspended Solids (mg/L)	Turbidity (NTU)	pH COMPOSITE (pH)
JANUARY -2009	224	967	357	307	137	7.43
FEBRUARY -2009	200	1020	307	258	133	7.46
MARCH -2009	261	1010	332	285	147	7.49
APRIL -2009	236	996	332	279	121	7.47
MAY -2009	234	964	362	302	135	7.58
JUNE -2009	256	957	374	311	141	7.60
JULY -2009	242	914	315	259	140	7.56
AUGUST -2009	235	890	333	276	156	7.58
SEPTEMBER-2009	255	883	364	295	142	7.58
OCTOBER -2009	264	829	464	401	132	7.54
NOVEMBER -2009	297	877	358	297	141	7.63
DECEMBER -2009	255	963	366	302	148	7.60
=========	========	========	========	========	========	========
Average:	247	939	355	298	139	7.54
Maximum:	297	1020	464	401	156	7.63
Minimum:	200	829	307	258	121	7.43

All samples are 24-hour composite.

NA= Not Analyzed NS= Not Sampled ND= Not Detected

North City Water Reclamation Plant Annual Monitoring Report

2009

(N34-REC) Reclaimed Water- Monthly/Annual Averages

Analyte: MDL:	Aluminum 47	Antimony 2.9	Arsenic .4	Barium .039	Beryllium .022	Boron 7
Units: Limit:	UG/L 1000	UG/L 6	UG/L 50	UG/L 1000	UG/L 4	UG/L 700
	=========					
JANUARY -2009	223	ND	0.61	62.4	ND	365
FEBRUARY -2009	135	ND	0.50	39.1	ND	385
MARCH -2009 APRIL -2009	154 72	ND ND	0.44 0.52	42.7 40.7	ND ND	340 355
MAY -2009	72 174	ND ND	0.52	37.8	ND ND	371
JUNE -2009	124	ND ND	0.64	35.7	ND ND	367
JULY -2009	108	ND ND	0.52	42.4	ND ND	354
AUGUST -2009	96	ND.	0.90	36.5	ND.	379
SEPTEMBER-2009	97	ND	0.94	31.0	ND	350
OCTOBER -2009	70	ND	0.69	30.9	ND	369
NOVEMBER -2009	87	<3	0.74	28.1	ND	360
DECEMBER -2009	86	ND	0.58	31.9	0.02	325
Annual Average:	119	0	0.64	38.3	0.00	360
Analyte:	Cadmium	Chromium	Cobalt	Copper	Iron	Lead
MDL:	.53	1.2	.85	2	37	2
Units:	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
Limit:	5	50			300	
JANUARY -2009	ND	ND	0.87	217.0	123	<2.00
FEBRUARY -2009	ND.	ND.	ND.	22.7	69	ND
MARCH -2009	ND	<1.2	ND	9.2	89	ND
APRIL -2009	ND	<1.2	ND	10.6	97	ND
MAY -2009	ND	ND	ND	6.6	119	ND
JUNE -2009	0.6	ND	ND	5.7	65	ND
JULY -2009	ND	ND	ND	8.8	53	ND
AUGUST -2009	ND	ND	ND	8.5	66	ND
SEPTEMBER-2009	ND	ND	ND	6.2	65	ND
OCTOBER -2009	ND	ND	ND	5.4	45	ND
NOVEMBER -2009	ND	ND	ND	6.6	127	ND
DECEMBER -2009	ND	<1.2	ND	9.2	113	ND
Annual Average:	0.1	0.000	0.073	26.4	86	0.00
Analyte:	Manganese	Mercury	Molybdenum	Nickel	Selenium	Silver
MDL:	.24	.09	.89	.53	.28	.4
Units:	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
Limit:	50	2		100	50	
==========	=========	=========	=========	=========	=========	=========
JANUARY -2009	70	ND	6.8	5.4	0.82	ND
FEBRUARY -2009	68	ND	6.1	6.1	0.88	<0.40
MARCH -2009	67	ND	7.0	5.4	1.02	ND
APRIL -2009	76	ND	7.0	7.5	1.03	ND
MAY -2009	64	ND	7.2	5.4	0.88	ND
JUNE -2009	67	ND ND	7.9	7.0	0.87	ND ND
JULY -2009	59 63	ND ND	7.2	4.8	0.61	ND ND
AUGUST -2009 SEPTEMBER-2009	63 69	ND ND	6.6 8.9	4.4 7.2	0.78 0.74	ND ND
OCTOBER - 2009	41	ND ND	6.0	4.1	0.74	<0.40
NOVEMBER -2009	86	ND ND	7.8	5.4	0.67	ND
DECEMBER -2009						
	61	0.25	5 X	4 6	0.40	NI)
==========	61	0.25	5.8	4.6	0.90	ND

MDL's listed are the maximum MDL for the past 12 months.

2009

(N34-REC) Reclaimed Water- Monthly/Annual Averages

Analyte:	Thallium	Vanadium	Zinc	Calcium	Lithium	Magnesium
MDL:	3.9	.64	2.5	.04	.002	.1
Units:	UG/L	UG/L	UG/L	MG/L	MG/L	MG/L
Limit:	2					
==========	=========	=========	=========	=========	=========	=========
JANUARY -2009	ND	ND	39.0	67.9	0.04	29.9
FEBRUARY -2009	ND	ND	20.2	65.6	0.04	28.9
MARCH - 2009	ND	ND	13.5	66.2	0.05	28.6
APRIL -2009	ND	ND	14.2	68.0	0.05	28.4
MAY -2009	ND	<0.6	23.3	70.0	0.04	31.2
JUNE -2009	ND	<0.6	19.4	65.7	0.04	28.4
JULY -2009	ND	ND	28.0	64.4	0.04	27.3
AUGUST -2009	ND	ND	20.9	64.9	0.04	27.6
SEPTEMBER-2009	ND	<0.6	22.5	59.5	0.04	25.4
OCTOBER -2009	ND	<0.6	22.2	62.4	0.04	27.6
NOVEMBER -2009	ND	ND	19.4	61.8	0.03	27.6
DECEMBER -2009	ND	<0.6	17.3	62.3	0.04	26.7
============						
Annual Average:	ND	<0.000	21.7	64.9	0.04	28.1
_						
Analyte:	Potassium	Sodium	Calcium	Magnesium	Total	Total
MDL:	.3	1	Hardness	Hardness	Hardness	Alkalinity
Units:	MG/L	MG/L	.04 MG/L	.1 MG/L	.1 MG/L	MG/L
Limit:						
==========	=========	=========	=========	=========	=========	========
JANUARY -2009	14.6	193	170	123	293	121
FEBRUARY -2009	14.9	176	164	118	282	112
MARCH - 2009	14.4	196	166	117	283	124
APRIL -2009	14.5	193	170	116	286	125
MAY - 2009	16.8	190	175	128	303	105
JUNE -2009	16.4	187	164	116	280	107
JULY -2009	15.6	181	161	112	273	108
AUGUST -2009	16.4	183	162	113	275	105
SEPTEMBER-2009	15.9	172	149	104	253	86
OCTOBER -2009	17.4	194	156	113	269	116
NOVEMBER -2009	16.8	186	155	113	268	100
DECEMBER -2009	15.3	192	156	109	265	103
=============		==========	=========	=========	==========	=========
Annual Average:	15.8	187	162	115	278	109
7	25.0				2.0	202
Analyte:	Chloride	Fluoride	Nitrate	Sulfate	Ortho Phosphat	te MBAS
MDL:	7	.05	.04	9	•	(surfactants)
Units:	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
Limit:	300	1	, _	300	, _	, _
===========	=========	==========	=========	=========	=========	=========
JANUARY -2009	265	0.4	36.8	218	4.40	0.23
FEBRUARY -2009	234	0.4	47.5	219	3.12	0.23
MARCH -2009	245	0.4	28.5	242	1.71	0.22
APRIL -2009	249	0.5	33.2	238	2.84	0.17
MAY -2009	232	0.4	62.7	234	5.44	0.19
JUNE -2009	220	0.3	48.3	220	6.23	0.13
JULY -2009	237	0.3	45.4	210	6.09	0.14
AUGUST -2009	238	0.3	48.9	314	14.00	0.14
SEPTEMBER-2009	225	0.3	56.8	201	6.09	0.14
OCTOBER - 2009	243	0.4	50.2	201	6.12	0.18
NOVEMBER - 2009	243	0.4	48.4	198	6.50	0.16
DECEMBER -2009	240	0.5	34.3	217	6.76	0.76
======================================					0.76	
Annual Average:	239	0.4	45.1	226	5.78	0.23
Author Average.	239	0.4	77.1	220	5.78	0.23

MDL's listed are the maximum MDL for the past 12 months.

2009

(N34-REC) Reclaimed Water- Monthly/Annual Averages

Analyte: MDL: Units: Limit:	Total Organic Carbon 0.25 MG/L				Total Dissolved Solids 28 1200
JANUARY - 2009	8.2	57	4.9	0.006	948
FEBRUARY -2009	10.0	56	4.5	0.007	952
MARCH -2009	8.9	59	5.0	0.002	932
APRIL -2009	9.4	58	4.9	0.003	956
MAY -2009	8.7	56	4.8	ND	947
JUNE -2009	8.4	57	4.8	0.005	909
JULY -2009	8.5	57	3.4	0.003	922
AUGUST -2009	7.9	58	4.7	0.010	894
SEPTEMBER-2009	8.6	58	4.4	ND	899
OCTOBER -2009	6.9	59	5.0	0.008	855
NOVEMBER -2009	8.0	58	4.8	ND	865
DECEMBER -2009	9.7	60	5.0	ND	893
=======================================	=======================================				=======================================
Annual Average:	8.6	58	4.7	0.004	914

MDL's listed are the maximum MDL for the past 12 months.

2009

(N01-PS_INF) Pump Station 64 Influent - Annual Averages

Analyte:	Aluminum	Antimony	Arsenic	Barium	Beryllium	Boron
MDL:	47	2.9	.4	.039	.022	7
Units:	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
JANUARY -2009	687	ND	1.0	107	ND	357
FEBRUARY -2009	724	ND	0.6	118	ND	362
MARCH - 2009	837	ND	1.3	127	ND	329
APRIL -2009	454	ND	0.5	112	ND	312
MAY -2009	693	ND	0.5	116	ND	357
JUNE -2009	903	ND	1.3	105	ND	355
JULY -2009	650	ND	0.8	105	ND	357
AUGUST -2009	636	ND	1.1	107	ND	361
SEPTEMBER-2009	491	ND	0.9	105	ND	357
OCTOBER -2009	370	ND	0.7	79	0.03	351
NOVEMBER -2009	680	<2.9	0.7	107	<0.02	364
DECEMBER -2009	560	ND	0.6	110	0.03	335
==========	=========	=========				=========
Annual Average:	640	0.0	0.8	108	0.01	350
Analyte:	Cadmium	Chromium	Cobalt	Copper	Iron	Lead
MDL:	.53	1.2	.85	2	37	2
Units:	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
JANUARY -2009	ND	1.6	ND	116	435	ND
FEBRUARY -2009	ND	2.8	ND	140	664	3.1
MARCH - 2009	ND	2.6	ND	121	813	ND
APRIL -2009	ND	2.4	ND	96	421	ND
MAY -2009	ND	2.3	ND	147	519	<2.0
JUNE -2009	ND	2.5	ND	121	494	ND
JULY -2009	ND	1.7	ND	129	434	<2.0
AUGUST -2009	ND	2.5	ND	141	484	<2.0
SEPTEMBER-2009	ND	2.1	ND	136	406	ND
OCTOBER -2009	ND	1.8	ND	91	289	ND
NOVEMBER -2009	ND	2.6	ND	139	710	<2.0
DECEMBER -2009	ND	2.2	ND	105	446	ND
==========					=========	
Annual Average:	ND	2.3	ND	124	510	0.3

2009

(N01-PS_INF) Pump Station 64 Influent - Annual Averages

Analyte: MDL: Units:	Lithium .002 MG/L	Manganese .24 UG/L	Mercury .09 UG/L	Molybdenum .89 UG/L	Nickel .53 UG/L	Selenium .28 UG/L
JANUARY -2009	0.045	110	ND ND	9.00	4.4	2.15
FEBRUARY -2009	0.048	115	ND	9.56	7.1	2.15
MARCH - 2009	0.058	133	ND	9.72	5.5	2.49
APRIL -2009	0.058	111	ND	7.82	4.0	1.95
MAY -2009	0.055	109	0.10	10.70	4.5	1.98
JUNE -2009	0.050	104	0.15	11.10	6.1	2.00
JULY -2009	0.048	98	0.19	10.10	4.2	1.89
AUGUST -2009	0.051	96	0.17	13.90	4.1	2.16
SEPTEMBER-2009	0.046	93	ND	12.30	5.4	1.74
OCTOBER -2009	0.046	94	ND	10.20	4.8	1.53
NOVEMBER -2009	0.036	102	0.17	11.40	5.7	1.48
DECEMBER -2009	0.052	102	0.30	8.87	4.0	1.84
	=========		========			========
Annual Average:	0.049	106	0.09	10	5.0	1.95
Analyte: MDL: Units:	Silver .4 UG/L	Thallium 3.9 UG/L	Vanadium .64 UG/L	Zinc 2.5 UG/L	Calcium .04 MG/L	Magnesium .1 MG/L
JANUARY -2009	1.3	ND	ND ND	132	93.9	41.3
FEBRUARY -2009	1.6	ND	ND	154	90.0	38.4
MARCH -2009	1.2	ND	0.85	158	105.0	42.7
APRIL -2009	0.5	ND	<0.64	113	96.2	40.5
MAY -2009	1.1	ND	ND	146	94.0	42.2
JUNE -2009	1.5	ND	0.73	130	87.0	37.5
JULY -2009	1.3	ND	ND	139	87.3	37.4
AUGUST -2009	1.3	ND	<0.64	142	86.0	36.8
SEPTEMBER-2009	1.2	ND	ND	122	78.9	33.4
OCTOBER -2009	1.2	ND	ND	109	81.4	36.6
NOVEMBER -2009	1.4	ND	0.69	150	68.3	30.9
DECEMBER -2009	1.9	ND	<0.64	137	92.7	39.8
Annual Average:	1.3	ND	0.19	136	88.4	38.1

2009

(N01-PS_INF) Pump Station 64 Influent - Annual Averages

						Total
Analyte:	Potassium	Sodium	Chloride	Fluoride	Sulfate	Dissolved Solids
MDL:	.3	1	7	.05	300	28
Units:	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
JANUARY -2009	21.1	225	NR	NR	NR	1150
FEBRUARY -2009	20.3	199	295	0.48	265	1140
MARCH - 2009	19.7	222	NR	NR	NR	1170
APRIL -2009	20.0	207	NR	NR	NR	1200
MAY -2009	22.3	229	302	0.42	285	1170
JUNE -2009	20.2	195	NR	NR	NR	1140
JULY -2009	21.0	218	NR	NR	NR	1130
AUGUST -2009	21.0	214	295	0.22	237	1090
SEPTEMBER-2009	19.0	188	NR	NR	NR	1100
OCTOBER -2009	22.9	225	309	ND	209	1060
NOVEMBER -2009	19.5	168	NR	NR	NR	1120
DECEMBER -2009	21.7	234	NR	NR	NR	1160
						=======================================
Annual Average:	20.7	210	300	0.28	249	1136

	Total
Analyte:	Cyanides
MDL:	.002
Units:	MG/L
JANUARY -2009	ND
FEBRUARY -2009	ND
MARCH -2009	0.003
APRIL -2009	ND
MAY -2009	ND
JUNE -2009	ND
JULY -2009	ND
AUGUST -2009	ND
SEPTEMBER-2009	ND
OCTOBER -2009	ND
NOVEMBER -2009	ND
DECEMBER -2009	ND
Annual Average:	0.000

2009

(N01-PEN) Penasquitos Influent - Annual Averages

Analyte: MDL: Units:	Aluminum 47 UG/L	Antimony 2.9 UG/L	Arsenic .4 UG/L	Barium .039 UG/L	Beryllium .022 UG/L	Boron 7 UG/L
JANUARY -2009	2110	ND	2.15	100	ND	291
FEBRUARY -2009	2770	ND	1.40	94	ND	351
MARCH - 2009	1690	ND	1.67	118	0.14	318
APRIL -2009	1960	ND	1.78	99	0.09	336
MAY -2009	1590	ND	1.50	103	0.03	346
JUNE -2009	2120	ND	NR	93	0.05	344
JULY -2009	2010	ND	2.30	121	<0.02	336
AUGUST -2009	2650	ND	4.68	94	<0.02	348
SEPTEMBER-2009	2200	ND	3.33	102	0.03	326
OCTOBER -2009	2280	<3	3.09	89	0.05	336
NOVEMBER -2009	1230	3	1.26	94	<0.02	347
DECEMBER -2009	1650	ND	2.02	99	0.13	330
Annual Average:	2022	0	2.29	101	0.04	334
Analyte:	Cadmium	Chromium	Cobalt	Copper	Iron	Lead
MDL:	.53	1.2	.85	2	37	2
Units:	UG/L	UG/L	UG/L	UG/L	UG/L	UG/L
JANUARY -2009	ND	5.0	ND	89	10800	ND
FEBRUARY -2009	ND	18.2	ND	105	13100	ND
MARCH -2009	ND	11.3	1.23	114	12000	2.0
APRIL -2009 MAY -2009	ND	17.5 17.0	1.36	97 111	10100	ND
	ND ND	9.5	<0.85 1.14	97	11900	2.9 2.3
JUNE -2009 JULY -2009	ND ND				11100	
					12200	
		7.5	<0.85	105	13300	2.2
AUGUST -2009	ND	8.0	ND	92	12500	2.0
AUGUST -2009 SEPTEMBER-2009	ND ND	8.0 13.5	ND <0.85	92 112	12500 13500	2.0 ND
AUGUST -2009 SEPTEMBER-2009 OCTOBER -2009	ND ND ND	8.0 13.5 7.5	ND <0.85 1.68	92 112 93	12500 13500 11800	2.0 ND ND
AUGUST -2009 SEPTEMBER-2009 OCTOBER -2009 NOVEMBER -2009	ND ND ND ND	8.0 13.5 7.5 11.8	ND <0.85 1.68 0.91	92 112 93 108	12500 13500 11800 12200	2.0 ND ND <2.0
AUGUST -2009 SEPTEMBER-2009 OCTOBER -2009	ND ND ND ND ND	8.0 13.5 7.5 11.8 13.8	ND <0.85 1.68 0.91 <0.85	92 112 93 108 107	12500 13500 11800	2.0 ND ND <2.0 <2.0

2009

(N01-PEN) Penasquitos Influent - Annual Averages

Analyte:	Lithium	Manganese	Mercury	Molybdenum	Nickel	Selenium
MDL:	.002	.24	.09	.89	.53	.28
Units:	MG/L	UG/L	UG/L	UG/L	UG/L	UG/L
=======================================						
JANUARY -2009	0.040	118	0.41	9.71	10.4	1.79
FEBRUARY -2009	0.037	172	ND	11.00	22.9	1.37
MARCH - 2009	0.052	9260	ND	12.50	15.2	1.90
APRIL -2009	0.051	177	0.32	8.64	17.1	1.89
MAY -2009	0.045	127	0.26	12.80	16.1	1.94
JUNE -2009	NR	135	NR	12.70	16.2	NR
JULY -2009	0.042	128	ND	12.90	15.0	1.72
AUGUST -2009	0.044	165	0.24	13.20	11.7	1.64
SEPTEMBER-2009	0.040	168	ND	15.60	21.9	1.53
OCTOBER -2009	0.041	162	0.13	13.40	15.3	1.75
NOVEMBER -2009	0.043	119	ND	12.00	18.7	1.27
DECEMBER -2009	0.054	120	0.47	11.40	17.9	1.57
===========	=========	=========				=========
Annual Average:	0.044	904	0.17	12.15	16.5	1.67
Analyte:	Silver	Thallium 3 9	Vanadium 64	Zinc 2 5	Calcium 04	Magnesium 1
MDL:	.4	3.9	.64	2.5	.04	.1
,			.64 UG/L	2.5 UG/L		.1 MG/L
MDL: Units:	.4 UG/L	3.9	.64 UG/L	2.5 UG/L	.04 MG/L	.1 MG/L
MDL: Units: ====== JANUARY -2009	.4 UG/L	3.9 UG/L	.64 UG/L ====================================	2.5 UG/L ====================================	.04 MG/L ====================================	.1 MG/L ====================================
MDL: Units:	.4 UG/L ====================================	3.9 UG/L ===== ND ND	.64 UG/L	2.5 UG/L	.04 MG/L	.1 MG/L
MDL: Units: ======= JANUARY -2009 FEBRUARY -2009	.4 UG/L ====================================	3.9 UG/L =====	.64 UG/L ====== 3.39 4.21 3.58	2.5 UG/L ====================================	.04 MG/L ====== 81.6 72.9	.1 MG/L ====================================
MDL: Units: ======= JANUARY -2009 FEBRUARY -2009 MARCH -2009	.4 UG/L ======= 1.35 1.50 0.64	3.9 UG/L ===== ND ND 9.85	.64 UG/L ======3.39 4.21	2.5 UG/L ====================================	.04 MG/L ======== 81.6 72.9 87.8	.1 MG/L ====================================
MDL: Units: ========= JANUARY -2009 FEBRUARY -2009 MARCH -2009 APRIL -2009	.4 UG/L ======= 1.35 1.50 0.64 1.14	3.9 UG/L ND ND 9.85 ND	.64 UG/L ======== 3.39 4.21 3.58 4.00	2.5 UG/L ========== 144 152 129	.04 MG/L ======= 81.6 72.9 87.8 87.8	.1 MG/L ====================================
MDL: Units: ========= JANUARY -2009 FEBRUARY -2009 MARCH -2009 APRIL -2009 MAY -2009 JUNE -2009	.4 UG/L ======== 1.35 1.50 0.64 1.14 1.27 2.26	3.9 UG/L ND ND 9.85 ND	.64 UG/L =======3.39 4.21 3.58 4.00 3.98 4.28	2.5 UG/L ====================================	.04 MG/L ======== 81.6 72.9 87.8 87.8 81.6	.1 MG/L ====================================
MDL: Units: ========= JANUARY -2009 FEBRUARY -2009 MARCH -2009 APRIL -2009 MAY -2009	.4 UG/L ======== 1.35 1.50 0.64 1.14 1.27	3.9 UG/L ND ND 9.85 ND ND ND	.64 UG/L =======3.39 4.21 3.58 4.00 3.98	2.5 UG/L ====================================	.04 MG/L ======= 81.6 72.9 87.8 87.8 81.6 NR	.1 MG/L ====================================
MDL: Units: ====================================	.4 UG/L ======== 1.35 1.50 0.64 1.14 1.27 2.26 2.19	3.9 UG/L ND ND 9.85 ND ND ND ND	.64 UG/L =======3.39 4.21 3.58 4.00 3.98 4.28 3.98	2.5 UG/L ====================================	.04 MG/L ======= 81.6 72.9 87.8 87.8 81.6 NR	.1 MG/L ====================================
MDL: Units: ====================================	.4 UG/L ======== 1.35 1.50 0.64 1.14 1.27 2.26 2.19 0.86	3.9 UG/L ND ND 9.85 ND ND ND ND ND	.64 UG/L =======3.39 4.21 3.58 4.00 3.98 4.28 3.98 4.23	2.5 UG/L 144 152 129 124 145 139 138 141	.04 MG/L ======= 81.6 72.9 87.8 87.8 81.6 NR 76.1	.1 MG/L ====================================
MDL: Units: ===================================	.4 UG/L 1.35 1.50 0.64 1.14 1.27 2.26 2.19 0.86 1.45	3.9 UG/L UG/L ND	.64 UG/L ========3.39 4.21 3.58 4.00 3.98 4.28 3.98 4.23 4.94	2.5 UG/L 144 152 129 124 145 138 141 157 140	.04 MG/L ======== 81.6 72.9 87.8 87.8 81.6 NR 76.1 73.7 70.3	.1 MG/L ====================================
MDL: Units: ===================================	.4 UG/L ====================================	3.9 UG/L ND ND 9.85 ND ND ND ND ND ND	.64 UG/L =========3.39 4.21 3.58 4.00 3.98 4.28 3.98 4.23 4.94 3.41	2.5 UG/L 144 152 129 124 145 138 141 157 140 156	.04 MG/L ========= 81.6 72.9 87.8 87.8 81.6 NR 76.1 73.7 70.3 68.6 83.3	.1 MG/L ====================================
MDL: Units: ===================================	.4 UG/L 1.35 1.50 0.64 1.14 1.27 2.26 2.19 0.86 1.45 ND 1.28 3.76	3.9 UG/L	.64 UG/L =========3.39 4.21 3.58 4.00 3.98 4.23 4.94 3.41 4.08 4.10	2.5 UG/L 144 152 129 124 145 138 141 157 140 156 135	.04 MG/L ======== 81.6 72.9 87.8 87.8 81.6 NR 76.1 73.7 70.3	.1 MG/L 37.5 34.4 38.6 38.3 37.7 NR 32.7 31.1 30.5 29.6 37.1 33.7

2009

(N01-PEN) Penasquitos Influent - Annual Averages

						Total
Analyte:	Potassium	Sodium	Chloride	Fluoride	Sulfate	Dissolved Solids
MDL:	.3	1	7	.05	9	28
Units:	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L
						=========
JANUARY -2009	19.9	174	NR	NR	NR	967
FEBRUARY -2009	18.8	164	230	0.66	232	1020
MARCH - 2009	18.1	178	NR	NR	NR	1010
APRIL -2009	18.8	177	NR	NR	NR	996
MAY -2009	20.6	188	244	0.50	253	964
JUNE -2009	NR	NR	NR	NR	NR	957
JULY -2009	19.2	172	NR	NR	NR	914
AUGUST -2009	19.1	173	231	0.29	211	890
SEPTEMBER-2009	18.0	157	NR	NR	NR	883
OCTOBER -2009	20.2	164	214	0.52	169	829
NOVEMBER -2009	21.3	220	NR	NR	NR	877
DECEMBER -2009	19.2	193	NR	NR	NR	963
==========	=========	=========	=========	=========	=========	=========
Annual Average:	19.4	178	230	0.49	216	939.2

	Total
Analyte:	Cyanides
MDL:	.002
Units:	MG/L
==========	=========
JANUARY -2009	ND
FEBRUARY -2009	ND
MARCH - 2009	ND
APRIL -2009	ND
MAY -2009	ND
JUNE -2009	NR
JULY -2009	ND
AUGUST -2009	ND
SEPTEMBER-2009	ND
OCTOBER -2009	0.0021
NOVEMBER -2009	ND
DECEMBER -2009	ND
Annual Average:	0.0002

Annual Pretreatment Program Sludge Analysis

2009 Annual Pretreatment Program Sludge Analysis (QUARTERLY SLUDGE PROJECT)

POINT LOMA WASTEWATER TREATMENT PLANT ORDER NO. R9-2002-0025 NPDES PERMIT NO. CA0107409

The Quarterly Sludge Project is part of the Pt. Loma WWTP NPDES (Permit No. CA0107409/Order No. R9-2002-0025) monitoring requirements. The sampling plan is designed so as to provide a "snapshot" of all of the physical and chemical characteristics monitored of the wastewater treatment waste streams for a short interval of time (1-2 days). This is conducted quarterly.

The Quarterly Sludge Project was conducted 4 times during 2009, composite and grab samples were taken in February, May, August, and October.

The North City Reclamation Water Plant is included in the Pre-treatment monitoring program and data from that aspect of the program is reported in the following section. The plant primary influents (N01-PS_INF and N01-PEN), Primary effluent (N10-EFF), and reclaimed water (N34-REC WATER) were sampled. For influent and effluent samples, automatic refrigerated samplers are composited over a 24 hour period.

pH, Grease & Oils, temperature, and conductivity are determined from grab samples.

Abbreviations:

NCWRP North City Water Reclamation Plant

NO1-PS_INF NCWRP influent from pump station 64

NO1-PEN NCWRP Penasquitos influent

N34-REC WATER NCWRP reclaimed water.

N10-EFF NCWRP Primary effluent

2009

Metals & Ions

Source:			N01-PS_INF	N01-PS_INF	N01-PS_INF	N01-PS_INF
Date:			03-FEB-2009	05-MAY-2009	04-AUG-2009	06-0CT-2009
Sample ID:		Units	P458407	P468691	P481220	P490492
Aluminum	==== 47	UG/L	724	780	690	362
Antimony	2.9	UG/L	ND	ND	ND	ND
Arsenic	.4	UG/L	0.61	0.52	1.12	0.66
Barium	.039	UG/L	118	122	108	85
Beryllium	.022	UG/L	ND	ND	ND	ND
Boron	7	UG/L	362	359	363	369
Cadmium	.53	UG/L	ND	ND	ND	ND
Chromium	1.2	UG/L	2.8	2.3	2.1	1.6
Cobalt	.85	UG/L	ND	ND	ND	ND
Copper	2	UG/L	140.0	153.0	164.0	87.2
Iron	37	UG/L	664	561	516	249
Lead	2	UG/L	3	2	ND	ND
Manganese	.24	UG/L	115.00	113.00	96.60	89.40
Mercury	.09	UG/L	ND	0.10	0.17	ND
Molybdenum	.89	UG/L	9.6	9.6	11.7	9.6
Nickel	.53	UG/L	7.1	4.5	4.4	4.8
Selenium	.28	UG/L	2.15	1.98	2.16	1.53
Silver	.4	UG/L	1.6	1.1	0.9	1.1
Thallium	3.9	UG/L	ND	ND	ND	ND
Vanadium	.64	UG/L	ND	ND	0.7	ND
Zinc	2.5	UG/L	154.0	154.0	153.0	98.5
Calcium Hardness	.1	MG/L	225	235	215	203
Magnesium Hardness	.4	MG/L	158	174	152	151
Total Hardness	.4	MG/L	383	409	366	354
Calcium	.04	MG/L	90	94	86	81
Lithium	.002	MG/L	0.048	0.055	0.051	0.046
Magnesium	.1	MG/L	38	42	37	37
Potassium	.3	MG/L	20	22	21	23
Sodium	1	MG/L	199	229	214	225
Bromide	.1	MG/L	0.52	0.59	0.57	0.53
Chloride	7	MG/L	295	302	295	309
Fluoride	.05	MG/L	0.48	0.42	0.22	ND
Nitrate	.04	MG/L	0.18	0.14	0.32	0.20
Ortho Phosphate	.2	MG/L	9.32	11.20	9.88	10.50
Sulfate	9	MG/L	265	285	237	209
Cyanides,Total	.002	MG/L	ND	ND	ND	ND
Adjusted Sodium Adsorption		MG/L	NR	NR	NR	NR
Percent Sodium		PERCENT	NR	NR	NR	NR
Total Organic Carbon		MG/L	NR	NR	NR	NR
Sulfides-Total	.18	MG/L	1.20	2.76	1.74	1.80
Total Kjeldahl Nitrogen	1.6	MG/L	54.8	70.9	49.4	52.2
Ammonia-N	.3	MG/L	39.5	39.8	38.4	39.7

ND= Not Detected NA= Not Analyzed NS= Not Sampled NR= Not Required

N34-REC WATER = NCWRP Reclaimed Water After Mixing

N10-EFF = Primary Effluent
N01-PS_INF = North City Pump Station Influent (PS #64)
N01-PEN = Penasquitos Pump Station Influent

2009

Metals & Ions

Source:			N01-PEN	N01-PEN	N01-PEN	NØ1-PEN
Date:			03-FEB-2009	05-MAY-2009	04-AUG-2009	06-0CT-2009
Sample ID:		Units	P458412	P468696	P481225	P490497
Aluminum	==== 47	UG/L	2770	1850	3370	2230
Antimony	2.9	UG/L	ND	ND	ND	ND
Arsenic	.4	UG/L	1.40	1.50	4.68	3.09
Barium	.039	UG/L	94	107	92	104
Beryllium	.022	UG/L	ND	0.03	ND	0.05
Boron	7	UG/L	351	351	355	336
Cadmium	.53	UG/L	ND	ND	ND	ND
Chromium	1.2	UG/L	18.2	10.4	8.8	8.4
Cobalt	.85	UG/L	ND	1.14	ND	0.87
Copper	2	UG/L	105.0	126.0	86.1	110.0
Iron	37	UG/L	13100	12400	11800	13400
Lead	2	UG/L	ND	3	ND	ND
Manganese	. 24	UG/L	172.00	130.00	180.00	156.00
Mercury	.09	UG/L	ND	0.26	0.24	0.13
Molybdenum	.89	UG/L	11.0	9.3	14.2	13.2
Nickel	.53	UG/L	22.9	10.2	13.9	20.9
Selenium	.28	UG/L	1.37	1.94	1.64	1.75
Silver	.4	UG/L	1.5	1.6	0.7	ND
Thallium	3.9	UG/L	ND	ND	ND	ND
Vanadium	.64	UG/L	4.2	4.5	4.5	3.4
Zinc	2.5	UG/L	152.0	147.0	133.0	141.0
Calcium Hardness	.1	MG/L	182	204	184	171
Magnesium Hardness	.4	MG/L	141	155	128	122
Total Hardness	.4	MG/L	324	359	312	293
Calcium	.04	MG/L	73	82	74	69
Lithium	.002	MG/L	0.037	0.045	0.044	0.041
Magnesium	.1	MG/L	34	38	31	30
Potassium	.3	MG/L	19	21	19	20
Sodium	1	MG/L	164	188	173	164
Bromide	.1	MG/L	0.32	0.35	0.20	0.12
Chloride	7	MG/L	230	244	231	214
Fluoride	.05	MG/L	0.66	0.50	0.29	0.52
Nitrate	.04	MG/L	0.19	ND	ND	0.17
Ortho Phosphate	.2	MG/L	1.46	2.80	2.75	6.34
Sulfate	9	MG/L	232	253	211	169
Cyanides,Total	.002	MG/L	ND	ND	ND	0.002
Adjusted Sodium Adsorption		MG/L	NR	NR	NR	NR
Percent Sodium		PERCENT	NR	NR	NR	NR
Total Organic Carbon		MG/L	NR	NR	NR	NR
Sulfides-Total	.18	MG/L	3.73	5.09	4.74	2.92
Total Kjeldahl Nitrogen	1.6	MG/L	47.3	43.8	43.6	41.8
Ammonia-N	.3	MG/L	34.3	31.8	33.2	35.5

ND= Not Detected NA= Not Analyzed NS= Not Sampled NR= Not Required

N34-REC WATER = NCWRP Reclaimed Water After Mixing
N10-EFF = Primary Effluent
N01-PS_INF = North City Pump Station Influent (PS #64)
N01-PEN = Penasquitos Pump Station Influent

2009

Metals & Ions

Source:			N10-EFF	N10-EFF	N10-EFF	N10-EFF
Date:			03-FEB-2009	05-MAY-2009	04-AUG-2009	06-0CT-2009
Sample ID:		Units	P458417	P468701	P481230	P490502
Aluminum	==== 47	===== UG/L	587	476	446	380
Antimony	2.9	UG/L	ND	ND	ND	4
Arsenic	.4	UG/L	0.61	0.67	1.27	0.89
Barium	.039	UG/L	86	89	79	70
Beryllium		UG/L	ND	ND	ND	ND
Boron	7	UG/L	356	361	373	355
Cadmium	.53	UG/L	ND	ND	ND	ND
Chromium	1.2	UG/L	3.6	2.0	1.9	2.1
Cobalt	.85	UG/L	ND	ND	ND	ND
Copper	2	UG/L	81.5	80.5	69.9	54.1
Iron	37	UG/L	2690	2190	1790	1760
Lead	2	UG/L	ND	ND	ND	ND
Manganese	.24	UG/L	110.00	106.00	104.00	99.90
Mercury	.09	UG/L	ND	ND	ND	ND
Molybdenum	.89	UG/L	8.9	8.1	10.3	9.1
Nickel	.53	UG/L	8.8	4.9	5.7	7.5
Selenium	.28	UG/L	1.49	1.87	1.40	1.32
Silver	.4	UG/L	1.2	0.6	0.4	0.4
Thallium	3.9	UG/L	ND	ND	ND	ND
Vanadium	.64	UG/L	ND	0.9	ND	ND
Zinc	2.5	UG/L	78.7	68.9	61.3	63.3
Calcium Hardness	.1	MG/L	205	227	204	199
Magnesium Hardness	.4	MG/L	152	170	143	145
Total Hardness	.4	MG/L	357	397	348	345
Calcium	.04	MG/L	82	91	82	80
Lithium	.002	MG/L	0.043	0.052	0.049	0.045
Magnesium	.1	MG/L	37	41	35	35
Potassium	.3	MG/L	20	22	21	22
Sodium	1	MG/L	189	218	201	211
Bromide	.1	MG/L	0.46	0.53	0.23	0.32
Chloride	7	MG/L	277	285	275	286
Fluoride	.05	MG/L	0.50	0.45	0.26	0.47
Nitrate	.04	MG/L	0.29	ND	ND	0.17
Ortho Phosphate	.2	MG/L	4.75	7.36	7.73	9.29
Sulfate	9	MG/L	256	276	230	202
Cyanides,Total	.002	MG/L	ND	ND	ND	ND
Adjusted Sodium Adsorption		MG/L	NR	NR	NR	NR
Percent Sodium		PERCENT	NR	NR	NR	NR
Total Organic Carbon		MG/L	NR	NR	NR	NR
Sulfides-Total	.18	MG/L	0.41	0.84	1.43	1.99
Total Kjeldahl Nitrogen	1.6	MG/L	46.8	58.4	43.6	46.4
Ammonia-N	.3	MG/L	37.0	37.3	36.4	38.3

ND= Not Detected NA= Not Analyzed NS= Not Sampled NR= Not Required

N34-REC WATER = NCWRP Reclaimed Water After Mixing
N10-EFF = Primary Effluent
N01-PS_INF = North City Pump Station Influent (PS #64)
N01-PEN = Penasquitos Pump Station Influent

2009

Metals & Ions

Source: Date:			03-FEB-2009	N34-REC WATER 05-MAY-2009	04-AUG-2009	06-0CT-2009
Sample ID:		Units	P458422	P468706	P481235	P490507
Aluminum	47	UG/L	138	170	92	76
Antimony	2.9	UG/L	ND	ND	ND	ND
Arsenic	.4	UG/L	0.50	0.61	0.90	0.69
Barium		UG/L	38	38	38	34
Beryllium		UG/L	ND	ND	ND	ND
Boron	7	UG/L	402	385	382	384
Cadmium	.53	UG/L	ND	ND	ND	ND
Chromium	1.2	UG/L	ND	ND	ND	ND
Cobalt	.85	UG/L	ND	ND	ND	ND ND
Copper	2	UG/L	25.2	6.0	11.0	6.7
Iron	37	UG/L	70	112	66	43
Lead	2	UG/L	ND	ND	ND	ND
Manganese	.24	UG/L	72.90	68.60	54.90	35.40
Mercury	.09	UG/L	72.50 ND	ND	ND	ND
Molybdenum	.89	UG/L	6.3	5.9	6.7	5.9
Nickel	.53	UG/L	8.0	4.6	4.8	5.4
Selenium	.28	UG/L	0.88	0.88	0.78	0.67
Silver	.4	UG/L	ND	ND	ND	0.5
Thallium	3.9	UG/L	ND ND	ND ND	ND ND	ND
Vanadium	.64	UG/L	ND ND	<0.6	ND ND	0.7
Zinc	2.5	UG/L	22.6	23.6	22.2	21.5
Calcium Hardness	.1	MG/L	164	175	162	156
Magnesium Hardness	.4	MG/L	119	129	114	114
3	.4	•	283	304	276	270
Total Hardness Calcium	.4	MG/L MG/L	283 66	70	276 65	62
		•				
Lithium		MG/L	0.036 29	0.044	0.041 28	0.042
Magnesium	.1	MG/L		31		28
Potassium	.3	MG/L	15	17	16	17
Sodium	1	MG/L	176	190	183	194
Bromide	.1	MG/L	ND	0.14	ND	ND
Chloride	7	MG/L	234	232	238	243
Fluoride	.05	MG/L	0.38	0.42	0.30	0.38
Nitrate	.04	MG/L	47.50	62.70	48.90	50.20
Ortho Phosphate	.2	MG/L	3.12	5.44	14.00	6.12
Sulfate	9	MG/L	219	234	314	204
Cyanides, Total	.002	MG/L	0.007	ND	0.010	0.008
Adjusted Sodium Adsorption		MG/L	4.5	4.8	4.7	5.0
Percent Sodium		PERCENT	55.9	56.0	57.6	59.0
Total Organic Carbon	40	MG/L	10.0	8.7	7.9	6.9
Sulfides-Total	.18	MG/L	ND	ND	ND	ND
Total Kjeldahl Nitrogen	1.6	MG/L	ND	ND	ND	ND
Ammonia-N	.3	MG/L	ND	ND	ND	ND

ND= Not Detected NA= Not Analyzed NS= Not Sampled NR= Not Required

N34-REC WATER = NCWRP Reclaimed Water After Mixing
N10-EFF = Primary Effluent
N01-PS_INF = North City Pump Station Influent (PS #64)
N01-PEN = Penasquitos Pump Station Influent

NORTH CITY WATER RECLAMATION PLANT QUARTERLY SLUDGE PROJECT ${\tt Radioactivity}$

From: 01-JAN-2009 to: 31-DEC-2009

Source	Sample Date	Sample ID	Gross Alpha Radiation	Gross Beta Radiation
		=======	=======================================	=======================================
N10-EFF	03-FEB-2009	P458417	4.2±2.4	24.3±4.7
N10-EFF	05-MAY-2009	P468701	1.6±2.4	22.3±4.2
N10-EFF	04-AUG-2009	P481230	3.2±2.1	23.9±5.0
N10-EFF	06-0CT-2009	P490502	3.0±1.7	21.0±4.1
N01-PS_INF	03-FEB-2009	P458407	2.0±2.1	29.6±5.4
N01-PS_INF	05-MAY-2009	P468691	3.8±2.6	23.2±4.9
N01-PS_INF	04-AUG-2009	P481220	3.3±2.3	26.2±5.3
N01-PS_INF	06-0CT-2009	P490492	2.5±2.5	27.5±5.1
N01-PEN	03-FEB-2009	P458412	2.6±2.4	19.5±3.9
N01-PEN	05-MAY-2009	P468696	5.6±3.1	44.6±7.6
N01-PEN	04-AUG-2009	P481225	5.2±2.8	20.5±4.2
N01-PEN	06-0CT-2009	P490497	5.4±3.2	24.1±5.1
N34-REC WATER	03-FEB-2009	P458422	0.2±1.6	14.7±3.5
N34-REC WATER	05-MAY-2009	P468706	0.5±1.5	22.8±5.7
N34-REC WATER	04-AUG-2009	P481235	2.5±1.8	17.3±4.2
N34-REC WATER	06-0CT-2009	P490507	0.9±1.2	17.4±3.7

ND= Not Detected NA= Not Analyzed NS= Not Sampled NR= Not Required

Units in picocuries per Liter (pCi/L)

N34-REC WATER = NCWRP Reclaimed Water After Mixing

N10-EFF = Primary Effluent

NO1-PS_INF = North City Pump Station Influent (PS #64)
NO1-PEN = Penasquitos Pump Station Influent

North City Water Reclamation Plant Annual - Quarterly Sludge Project

2009

Physical Parameters

Analytes	MDL I	Units	N01-PS_INF 03-FEB-2009	N01-PS_INF 05-MAY-2009	_	-
Ammonia-N	.3	MG/L	39.5	39.8	38.4	39.7
BOD (Biochemical Oxygen Demand)		MG/L	150.0	185.0	209.0	244.0
Hexane Extractable Material		MG/L	30.4	37.0	30.1	30.6
Chemical Oxygen Demand		MG/L	749	NR	473	429
, ,		- *	2100	2090	2020	2160
Conductivity	10	UMHOS/CM				
MBAS (Surfactants)	.03	MG/L	9.0	10.4	6.6	9.8
pH (grab)		PH	7.3	7.5	7.3	7.2
Total Alkalinity (bicarbonate)	20	MG/L	296	301	282	293
Total Dissolved Solids	28	MG/L	1160	1180	1080	1070
Total Suspended Solids	1.4	MG/L	86.0	210.0	216.0	234.0
Volatile Suspended Solids	1.6	MG/L	79.0	184.0	192.0	208.0
Total Kjeldahl Nitrogen	1.6	MG/L	54.8	70.9	49.4	52.2
Total Organic Carbon		MG/L	NR	NR	NR	NR
Turbidity	.13	NTU	85.0	110.0	150.0	150.0
Sulfides-Total	.18	MG/L	1.2	2.8	1.7	1.8

		N01-PEN	N01-PEN	N01-PEN	N01-PEN
Analytes	MDL Units	03-FEB-2009	05-MAY-2009	04-AUG-2009	06-0CT-2009
=======================================	=== =====	=== ==========			
Ammonia-N	.3 MG/L	34.3	31.8	33.2	35.5
BOD (Biochemical Oxygen Demand)	2 MG/L	203.0	246.0	199.0	210.0
Hexane Extractable Material	1.2 MG/L	56.1	62.9	69.0	66.3
Chemical Oxygen Demand	18 MG/L	537	NR	445	242
Conductivity	10 UMHOS	/CM 1810	1820	1760	1770
MBAS (Surfactants)	.03 MG/L	9.3	8.3	6.9	9.6
pH (grab)	PH	7.2	7.4	7.4	7.1
Total Alkalinity (bicarbonate)	20 MG/L	286	286	283	284
Total Dissolved Solids	28 MG/L	960	992	884	888
Total Suspended Solids	1.4 MG/L	268.0	336.0	303.0	344.0
Volatile Suspended Solids	1.6 MG/L	228.0	276.0	243.0	280.0
Total Kjeldahl Nitrogen	1.6 MG/L	47.3	43.8	43.6	41.8
Total Organic Carbon	MG/L	NR	NR	NR	NR
Turbidity	.13 NTU	120.0	110.0	100.0	100.0
Sulfides-Total	.18 MG/L	3.7	5.1	4.7	2.9

NA= Not Analyzed ND= Not Detected

North City Water Reclamation Plant Annual - Quarterly Sludge Project

2009

Physical Parameters

		N10-EFF	N10-EFF	N10-EFF	N10-EFF
Analytes	MDL Units	03-FEB-2009	05-MAY-2009	04-AUG-2009	06-0CT-2009
=======================================	=== ======				
Ammonia-N	.3 MG/L	37.0	37.3	36.4	38.3
BOD (Biochemical Oxygen Demand)	2 MG/L	134.0	137.0	139.0	133.0
Hexane Extractable Material	1.2 MG/L	35.0	26.1	29.8	26.4
Chemical Oxygen Demand	18 MG/L	319	NR	322	310
Conductivity	10 UMHOS/CM	2000	2000	1940	1720
MBAS (Surfactants)	.03 MG/L	8.0	9.1	6.2	9.3
pH (grab)	PH	7.3	7.5	7.4	7.3
Total Alkalinity (bicarbonate)	20 MG/L	289	291	282	287
Total Dissolved Solids	28 MG/L	1100	1100	1020	1070
Total Suspended Solids	1.4 MG/L	84.0	90.0	76.0	79.0
Volatile Suspended Solids	1.6 MG/L	73.3	76.0	58.0	67.0
Total Kjeldahl Nitrogen	1.6 MG/L	46.8	58.4	43.6	46.4
Total Organic Carbon	MG/L	NR	NR	NR	NR
Turbidity	.13 NTU	81.0	71.0	67.0	71.0
Sulfides-Total	.18 MG/L	0.4	0.8	1.4	2.0
		Physical Param	neters		

Physical	Parameters

		N34-REC WATER	N34-REC WATER	N34-REC WATER	N34-REC WATER
Analytes	MDL Units	03-FEB-2009	05-MAY-2009	04-AUG-2009	06-0CT-2009
=======================================	=== ======	==========			
Ammonia-N	.3 MG/L	ND	ND	ND	ND
BOD (Biochemical Oxygen Demand)	2 MG/L	2.4	ND	ND	ND
Hexane Extractable Material	1.2 MG/L	1.8	2.2	2.2	3.4
Chemical Oxygen Demand	18 MG/L	29	NR	20	ND
Conductivity	10 UMHOS/CM	1550	1510	1510	1530
MBAS (Surfactants)	.03 MG/L	0.2	0.2	0.1	0.2
pH (grab)	PH	7.0	7.4	7.1	7.2
Total Alkalinity (bicarbonate)	20 MG/L	112	105	105	116
Total Dissolved Solids	28 MG/L	926	926	902	908
Total Suspended Solids	1.4 MG/L	ND	ND	ND	ND
Volatile Suspended Solids	1.6 MG/L	ND	ND	ND	ND
Total Kjeldahl Nitrogen	1.6 MG/L	ND	ND	ND	ND
Total Organic Carbon	MG/L	10.0	8.7	7.9	6.9
Turbidity	.13 NTU	1.3	1.2	1.6	1.0
Sulfides-Total	.18 MG/L	ND	ND	ND	ND

NA= Not Analyzed ND= Not Detected

North City Water Reclamation Plant Annual Monitoring Report

2009

Organo - Tins

Analyte		Units	N01-PS_INF 03-FEB-2009 P458407	N01-PS_INF 05-MAY-2009 P468691	N01-PS_INF 04-AUG-2009 P481220	N01-PS_INF 06-OCT-2009 P490492
Tributyltin	2	UG/L	ND	ND	ND	ND
Dibutyltin Monobutyltin	7 16	UG/L UG/L	ND ND	ND ND	ND ND	ND ND
·						
			NØ1-PEN	NØ1-PEN	NØ1-PEN	NØ1-PEN
Analyte	MDL	Units	03-FEB-2009 P458412	05-MAY-2009 P468696	04-AUG-2009 P481225	06-0CT-2009 P490497
Tributyltin	=== 2	===== UG/L	ND	ND	ND	ND
Dibutyĺtin	7	UG/L	ND	ND	ND	ND
Monobutyltin	16	UG/L	ND	ND	ND	ND
			N10-EFF	N10-EFF	N10-EFF	N10-EFF
Analyte	MDL	Units	03-FEB-2009 P458417	05-MAY-2009 P468701	04-AUG-2009 P481230	06-0CT-2009 P490502
	===	=====				======================================
Tributyltin Dibutyltin	2 7	UG/L UG/L	ND ND	ND ND	ND ND	ND ND
Monobutyltin		UG/L	ND	ND	ND	ND
			N34-REC WATER	N34-REC WATER	N34-REC WATER	N34-REC WATER
Analyte	WDI	Units	03-FEB-2009 P458422	05-MAY-2009 P468706	04-AUG-2009 P481235	06-0CT-2009 P490507
========					F461233	
Tributyltin	2 7	UG/L UG/L	ND ND	ND ND	ND ND	ND ND
Dibutyltin Monobutyltin		UG/L	ND ND	ND ND	ND ND	ND ND

NA= Not Analyzed ND= Not Detected

North City Water Reclamation Plant Semi Annual Sludge Project

2009

Chlorinated Pesticides

Analyte	MDL	Units	N01-PS_INF 03-FEB-2009 P458407	N01-PS_INF 05-MAY-2009 P468691	N01-PS_INF 04-AUG-2009 P481220	N01-PS_INF 06-OCT-2009 P490492
======================================	==== 7	===== NG/L	ND	ND	ND	ND
BHC, Alpha isomer	, 7	NG/L NG/L	16	ND ND	ND ND	ND ND
BHC, Beta isomer	3	NG/L	ND	ND ND	ND ND	ND ND
BHC, Delta isomer	3	NG/L NG/L	ND ND	ND ND	ND ND	ND ND
BHC, Gamma isomer	5	NG/L	34	ND ND	ND ND	ND ND
Alpha (cis) Chlordane	3	NG/L	ND	ND ND	ND ND	ND ND
Gamma (trans) Chlordane	4	NG/L	ND ND	ND ND	ND ND	ND ND
Alpha Chlordene	-	NG/L	NA NA	NA NA	NA NA	NA NA
Gamma Chlordene		NG/L	NA NA	NA NA	NA NA	NA NA
Cis Nonachlor	3	NG/L NG/L	ND ND	ND	ND ND	ND ND
Dieldrin	3	NG/L	ND ND	ND ND	ND ND	ND ND
Endosulfan Sulfate	6	NG/L	ND ND	ND ND	ND ND	ND ND
Alpha Endosulfan	4	NG/L	ND ND	ND ND	ND ND	ND ND
Beta Endosulfan	2	NG/L NG/L	ND ND	ND ND	ND ND	ND ND
Endrin	2	NG/L NG/L	ND ND	ND ND	ND ND	ND ND
Endrin aldehyde	9	NG/L	ND ND	ND ND	ND ND	ND ND
Heptachlor	8	NG/L NG/L	ND ND	ND ND	ND ND	ND ND
Heptachlor epoxide	4	NG/L	ND ND	ND ND	ND ND	ND ND
Methoxychlor	10	NG/L	ND ND	ND ND	ND ND	ND ND
Mirex	10	NG/L NG/L	ND ND	ND ND	ND ND	ND ND
o,p-DDD	4	NG/L	4400	ND ND	ND ND	ND ND
	5	NG/L NG/L	ND	ND ND	ND ND	ND ND
o,p-DDE o,p-DDT	3	NG/L NG/L	ND ND	ND ND	ND ND	ND ND
Oxychlordane	6	NG/L NG/L	ND ND	ND ND	ND ND	ND ND
PCB 1016		NG/L NG/L	ND ND	ND ND	ND ND	ND ND
PCB 1010		NG/L	ND ND	ND ND	ND ND	ND ND
PCB 1221 PCB 1232	360	NG/L	ND ND	ND ND	ND ND	ND ND
PCB 1232 PCB 1242	4000	•	ND ND	ND ND	ND ND	ND ND
PCB 1242 PCB 1248		NG/L	ND ND	ND ND	ND ND	ND ND
PCB 1254		NG/L	ND ND	ND ND	ND ND	ND ND
PCB 1254 PCB 1260	2000		ND ND	ND ND	ND ND	ND ND
PCB 1260 PCB 1262	930	NG/L	ND ND	ND ND	ND ND	ND ND
p,p-DDD	3	NG/L	ND ND	ND ND	ND ND	ND ND
p,p-DDE	4	NG/L	9	ND ND	ND ND	ND ND
p,p-DDT	8	NG/L	ND	ND ND	ND ND	ND ND
Toxaphene	330	NG/L	ND ND	ND ND	ND ND	ND ND
Trans Nonachlor	5	NG/L	ND ND	ND ND	ND ND	ND ND
=======================================	====	=====				
Heptachlors	8	NG/L	0	0	0	0
Endosulfans	6	NG/L	0	0	0	0
Polychlorinated biphenyls	4000		0	0	0	0
Chlordane + related cmpds.		NG/L	0	0	0	0
DDT and derivatives	8	NG/L	4409	0	0	0
Hexachlorocyclohexanes	7	NG/L	50	0	0	0
Aldrin + Dieldrin	7	NG/L	0	0	0	0
	====	=====	==========	=========	========	========
Chlorinated Hydrocarbons	4000	NG/L	4459	0	0	0

NA= Not Analyzed ND= Not Detected

North City Water Reclamation Plant Semi Annual Sludge Project

2009 Chlorinated Pesticides

			NO1 DEN	NO1 DEN	NO1 DEN	NO1 DEN
			NO1-PEN	NO1-PEN	N01-PEN	NØ1-PEN
A T	MDI	11-24-	03-FEB-2009	05-MAY-2009	04-AUG-2009	06-0CT-2009
Analyte	MDL	Units	P458412	P468696	P481225	P490497
Aldrin	7	HE NG/L	ND	. ======== ND	. ======== ND	ND
BHC, Alpha isomer	7	NG/L	ND ND	ND ND	ND ND	ND ND
BHC, Beta isomer	3	NG/L	ND ND	ND ND	ND ND	ND ND
BHC, Delta isomer	3	NG/L	ND ND	ND ND	ND ND	ND ND
BHC, Gamma isomer	5	NG/L	ND ND	ND ND	ND ND	ND ND
Alpha (cis) Chlordane	3	NG/L	ND ND	ND ND	ND	ND ND
Gamma (trans) Chlordane	4	NG/L	ND	ND ND	ND ND	ND ND
Alpha Chlordene	•	NG/L	NA	NA	NA NA	NA NA
Gamma Chlordene		NG/L	NA NA	NA NA	NA NA	NA NA
Cis Nonachlor	3	NG/L	ND.	ND.	ND.	ND.
Dieldrin	3	NG/L	ND	ND	ND	ND
Endosulfan Sulfate	6	NG/L	ND	ND	ND	ND
Alpha Endosulfan	4	NG/L	ND	ND	ND	ND
Beta Endosulfan	2	NG/L	ND	ND	ND	ND
Endrin	2	NG/L	ND	ND	ND	ND
Endrin aldehyde	9	NG/L	ND	ND	ND	ND
Heptachlor	8	NG/L	ND	ND	ND	ND
Heptachlor epoxide	4	NG/L	ND	ND	ND	ND
Methoxychlor	10	NG/L	ND	ND	ND	ND
Mirex	10	NG/L	ND	ND	ND	ND ND
o,p-DDD	4	NG/L	22	ND	ND	ND ND
o,p-DDE	5	NG/L	ND	ND	ND	ND
o,p-DDT	3	NG/L	ND	ND	ND ND	ND
Oxychlordane	6	NG/L	ND	ND	ND	ND
PCB 1016	4000	•	ND	ND	ND	ND
PCB 1221	4000	•	ND	ND	ND	ND
PCB 1232	360	NG/L	ND	ND	ND	ND
PCB 1242	4000	- /	ND	ND	ND	ND
PCB 1248	2000	- /	ND	ND	ND	ND
PCB 1254	2000	•	ND	ND	ND	ND
PCB 1260	2000	•	ND	ND	ND ND	ND
PCB 1262	930	NG/L	ND	ND	ND	ND
p,p-DDD	3	NG/L	ND	ND	ND	ND
p,p-DDE	4	NG/L	ND	ND	ND	6
p,p-DDT	8	NG/L	ND	ND	ND	ND
Toxaphene	330	NG/L	ND	ND	ND	ND
Trans Nonachlor	5	NG/L	ND	ND	ND	ND
=======================================	====	=====	=======================================	=======================================	=========	==========
Heptachlors	8	NG/L	0	0	0	0
Endosulfans	6	NG/L	0	0	0	0
Polychlorinated biphenyls	4000	NG/L	0	0	0	0
Chlordane + related cmpds.	6	NG/L	0	0	0	0
DDT and derivatives	8	NG/L	22	0	0	6
Hexachlorocyclohexanes	7	NG/L	0	0	0	0
Aldrin + Dieldrin	7	NG/L	0	0	0	0
=======================================	====	=====	=======================================	=======================================		
Chlorinated Hydrocarbons	4000	NG/L	22	0	0	6

NA= Not Analyzed ND= Not Detected

2009 Chlorinated Pesticides

Analyte	MDL	Units	N10-EFF 03-FEB-2009 P458417	N10-EFF 05-MAY-2009 P468701	N10-EFF 04-AUG-2009 P481230	N10-EFF 06-OCT-2009 P490502
A7 dud u	====	=====	ND	ND.	ND.	ND
Aldrin	7 7	NG/L	ND	ND ND	ND	ND
BHC, Alpha isomer		NG/L	ND		ND	ND
BHC, Beta isomer	3	NG/L	ND	ND	ND	ND
BHC, Delta isomer	3	NG/L	ND	ND	ND	ND
BHC, Gamma isomer	5	NG/L	ND	ND	ND	ND
Alpha (cis) Chlordane	3	NG/L	ND	ND	ND	ND
Gamma (trans) Chlordane	4	NG/L	ND	ND	ND	ND
Alpha Chlordene		NG/L	NA	NA	NA	NA
Gamma Chlordene	_	NG/L	NA	NA	NA	NA
Cis Nonachlor	3	NG/L	ND	ND	ND	ND
Dieldrin	3	NG/L	ND	ND	ND	ND
Endosulfan Sulfate	6	NG/L	ND	ND	ND	ND
Alpha Endosulfan	4	NG/L	ND	ND	ND	ND
Beta Endosulfan	2	NG/L	ND	ND	ND	ND
Endrin	2	NG/L	ND	ND	ND	ND
Endrin aldehyde	9	NG/L	ND	ND	ND	ND
Heptachlor	8	NG/L	ND	ND	ND	ND
Heptachlor epoxide	4	NG/L	ND	ND	ND	ND
Methoxychlor	10	NG/L	ND	ND	ND	ND
Mirex	10	NG/L	ND	ND	ND	ND
o,p-DDD	4	NG/L	ND	ND	ND	ND
o,p-DDE	5	NG/L	ND	ND	ND	ND
o,p-DDT	3	NG/L	ND	ND	ND	ND
Oxychlordane	6	NG/L	ND	ND	ND	ND
PCB 1016	4000		ND	ND	ND	ND
PCB 1221	4000		ND	ND	ND	ND
PCB 1232	360	NG/L	ND	ND	ND	ND
PCB 1242	4000		ND	ND	ND	ND
PCB 1248	2000	- ,	ND	ND	ND	ND
PCB 1254	2000		ND	ND	ND	ND
PCB 1260	2000		ND	ND	ND	ND
PCB 1262	930	NG/L	ND	ND	ND	ND
p,p-DDD	3	NG/L	ND	ND	ND	ND
p,p-DDE	4	NG/L	ND	ND	ND	ND
p,p-DDT	8	NG/L	ND	ND	ND	ND
Toxaphene	330	NG/L	ND	ND	ND	ND
Trans Nonachlor	5	NG/L	ND	ND	ND	ND
	====	=====				
Heptachlors	8	NG/L	0	0	0	0
Endosulfans	6	NG/L	0	0	0	0
Polychlorinated biphenyls	4000		0	0	0	0
Chlordane + related cmpds.		NG/L	0	0	0	0
DDT and derivatives	8	NG/L	0	0	0	0
Hexachlorocyclohexanes	7 7	NG/L	0	0	0	0
Aldrin + Dieldrin	/	NG/L		0	0	
Chlorinated Hydrocarbons	4000		0	0	0	0

2009

Chlorinated Pesticides

			N34-REC WATER 03-FEB-2009	N34-REC WATER 05-MAY-2009	N34-REC WATER 04-AUG-2009	N34-REC WATER 06-OCT-2009
Analyte	MDL	Units	P458422	P468706	P481235	P490507
Aldrin	7	NG/L	ND	ND	ND	ND
BHC, Alpha isomer	7	NG/L	ND	ND	ND	ND
BHC, Beta isomer	3	NG/L	ND	ND	ND	ND
BHC, Delta isomer	3	NG/L	ND	ND	ND	ND
BHC, Gamma isomer	5	NG/L	ND	ND	ND	ND
Alpha (cis) Chlordane	3	NG/L	ND	ND	ND	ND
Gamma (trans) Chlordane	4	NG/L	ND	ND	ND	ND
Alpha Chlordene		NG/L	NA	NA	NA	NA
Gamma Chlordene		NG/L	NA	NA	NA	NA
Cis Nonachlor	3	NG/L	ND	ND	ND	ND
Dieldrin	3	NG/L	ND	ND	ND	ND
Endosulfan Sulfate	6	NG/L	ND	ND	ND	ND
Alpha Endosulfan	4	NG/L	ND	ND	ND	ND
Beta Endosulfan	2	NG/L	ND	ND	ND	ND
Endrin	2	NG/L	ND	ND	ND	ND
Endrin aldehyde	9	NG/L	ND	ND	ND	ND
Heptachlor	8	NG/L	ND	ND	ND	ND
Heptachlor epoxide	4	NG/L	ND	ND	ND	ND
Methoxychlor	10	NG/L	ND	ND	ND	ND
Mirex	10	NG/L	ND	ND	ND	ND
o,p-DDD	4	NG/L	ND	ND	ND	ND
o,p-DDE	5	NG/L	ND	ND	ND	ND
o,p-DDT	3	NG/L	ND	ND.	ND	ND
Oxychlordane	6	NG/L	ND	ND.	ND	ND
PCB 1016		NG/L	ND	ND.	ND.	ND
PCB 1221		NG/L	ND	ND	ND	ND
PCB 1232	360	NG/L	ND	ND.	ND	ND
PCB 1242		NG/L	ND	ND	ND	ND
PCB 1248		NG/L	ND	ND.	ND	ND
PCB 1254		NG/L	ND	ND.	ND	ND
PCB 1260	2000		ND.	ND.	ND.	ND
PCB 1262	930	NG/L	ND.	ND.	ND.	ND ND
p,p-DDD	3	NG/L	ND.	ND.	ND.	ND ND
p,p-DDE	4	NG/L	ND.	ND.	ND.	ND
p,p-DDT	8	NG/L	ND.	ND.	ND.	ND ND
Toxaphene	330	NG/L	ND.	ND.	ND.	ND ND
Trans Nonachlor	5	NG/L	ND.	ND	ND.	ND
=======================================	====	=====				
Heptachlors	8	NG/L	0	0	0	0
Endosulfans	6	NG/L	0	0	0	0
Polychlorinated biphenyls	4000		0	0	0	0
Chlordane + related cmpds.		NG/L	0	0	0	0
DDT and derivatives	8	NG/L	0	0	0	0
Hexachlorocyclohexanes	7	NG/L	0	0	0	0
Aldrin + Dieldrin	7	NG/L	0	0	0	0
=======================================	-	=====	=========	=========	=========	=========
Chlorinated Hydrocarbons		NG/L	0	0	0	0

2009

Base/Neutral Compounds

P468691 P468691 P468691 PACE OF THE PAC	ND N	P490492
ND N	ND ND ND ND 6.9 ND	ND ND ND 10.8 ND
ND N	ND ND ND 6.9 ND	ND ND ND 10.8 ND
ND N	ND ND 6.9 ND	ND ND 10.8 ND
ND 7.3 ND	ND 6.9 ND	ND 10.8 ND
7.3 ND ND ND ND ND ND ND ND ND N	6.9 ND	10.8 ND
ND	ND N	ND N
ND N	ND N	ND N
ND N	ND N	ND N
ND N	ND N	ND N
ND N	ND N	ND
ND N	ND N	ND
ND N	ND N	ND
ND N	ND N	ND ND ND ND ND ND ND ND
ND N	ND	ND ND ND ND ND ND ND
ND N	ND ND ND ND ND ND 10.9	ND ND ND ND ND ND
ND N	ND ND ND ND ND 10.9	ND ND ND ND ND
ND N	ND ND ND ND 10.9	ND ND ND ND
ND N	ND ND ND 10.9 ND	ND ND ND
ND N	ND ND 10.9 ND	ND ND
ND 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.	ND 10.9 ND	ND
10.1 0 ND 0 ND 0 ND 0 ND 0 ND 0 ND	10.9 ND	
ND	ND	
0 ND 0 ND 0 ND 0 ND 0 ND		13.0
) ND) ND) ND	ND	ND
ND ND ND ND	MD	ND
ND ND		ND ND
) ND		ND ND
		ND
) ND		ND
) ND		3.8
) ND	ND	ND
		ND ND
		ND ND
		ND ND
		0.0
		27.6
)	ND N	ND ND ND ND

2009

Base/Neutral Compounds

Analyte		Units	N01-PEN 03-FEB-2009 P458412	N01-PEN 05-MAY-2009 P468696	N01-PEN 04-AUG-2009 P481225	N01-PEN 06-OCT-2009 P490497
1,2,4-trichlorobenzene		UG/L	ND	ND	ND	ND
1,2-diphenylhydrazine		UG/L	ND ND	ND ND	ND ND	ND ND
2,4-dinitrotoluene	1.36		ND ND	ND ND	ND ND	ND ND
2,6-dinitrotoluene	1.53		ND ND	ND ND	ND ND	ND ND
Dibenzo(A,H)anthracene	1.01		ND ND	ND ND	ND ND	ND ND
Diethyl phthalate		UG/L	6.2	8.1	6.9	9.3
Dimethyl phthalate	1.44		ND	ND	ND.	ND.
Di-n-butyl phthalate		UG/L	ND	ND	ND	ND
Di-n-octyl phthalate	1	UG/L	ND	ND	ND	ND
2-chloronaphthalene	1.87	UG/L	ND	ND	ND	ND
3,3-dichlorobenzidine	2.44	UG/L	ND	ND	ND	ND
3,4-benzo(B)fluoranthene	1.35	UG/L	ND	ND	ND	ND
4-bromophenyl phenyl ether	1.4	UG/L	ND	ND	ND	ND
4-chlorophenyl phenyl ether	1.57	UG/L	ND	ND	ND	ND
Hexachloroethane	1.32	UG/L	ND	ND	ND	ND
Hexachlorobenzene	1.48	UG/L	ND	ND	ND	ND
Hexachlorobutadiene	1.64	UG/L	ND	ND	ND	ND
Hexachlorocyclopentadiene	1.25	UG/L	ND	ND	ND	ND
Acenaphthene	1.8	UG/L	ND	ND	ND	ND
Acenaphthylene		UG/L	ND	ND	ND	ND
Anthracene		UG/L	ND	ND	ND	ND
Bis-(2-chloroisopropyl) ether		UG/L	ND	ND	ND	ND
Bis-(2-ethylhexyl) phthalate	8.96		ND	ND	9.7	13.5
Benzidine	1.52	/	ND	ND	ND	ND
Benzo[A]anthracene		UG/L	ND	ND	ND	ND
Benzo[A]pyrene		UG/L	ND	ND	ND	ND
Benzo[G,H,I]perylene		UG/L	ND	ND	ND	ND
Benzo[K]fluoranthene	1.49		ND	ND	ND	ND
bis(2-chloroethoxy)methane		UG/L	ND	ND	ND	ND
bis(2-chloroethyl) ether	1.38		ND	ND	ND	ND
Butyl benzyl phthalate	2.84		ND	ND	ND	ND
Chrysene	1.16		ND	ND	ND	ND
Fluoranthene Fluorene		UG/L	ND	ND ND	ND ND	ND ND
Indeno(1,2,3-CD)pyrene	1.14	UG/L	ND ND	ND ND	ND ND	ND ND
Isophorone	1.53		ND ND	ND ND	ND ND	ND ND
Naphthalene	1.65		ND ND	ND ND	ND ND	ND ND
Nitrobenzene		UG/L	ND ND	ND ND	ND ND	ND ND
N-nitrosodimethylamine		UG/L	ND ND	ND ND	ND ND	ND ND
N-nitrosodiphenylamine		UG/L	ND	ND ND	ND ND	ND ND
N-nitrosodi-n-propylamine		UG/L	ND	ND ND	ND ND	ND ND
Phenanthrene	1.34		ND	ND	ND	ND.
Pyrene	1.43		ND	ND	ND	ND
=======================================	====		=========			
Polynuc. Aromatic Hydrocarbons			0.0	0.0	0.0	0.0
Base/Neutral Compounds		UG/L	6.2	8.1	16.6	22.8
Additional analytes determined						
1-methylnaphthalene		UG/L	ND	ND	ND	ND
2-methylnaphthalene		UG/L	ND	ND	ND	ND
2,6-dimethylnaphthalene		UG/L	ND	ND	ND	ND
2,3,5-trimethylnaphthalene		UG/L	ND	ND	ND	ND
1-methylphenanthrene		UG/L	ND	ND	ND	ND
Benzo[e]pyrene	1.44	UG/L	ND	ND	ND	ND
Perylene		UG/L	ND	ND	ND	ND
Biphenyl	2.29	UG/L	ND	ND	ND	ND
Pyridine	3.33	UG/L	ND	ND	ND	ND

NA= Not Analyzed

ND= Not Detected

2009

Base/Neutral Compounds

			N10-EFF	N10-EFF	N10-EFF	N10-EFF
	MD.		03-FEB-2009	05-MAY-2009	04-AUG-2009	06-0CT-2009
Analyte		Units	P458417	P468701	P481230	P490502
4.2.4.1.1.1						
1,2,4-trichlorobenzene		UG/L	ND	ND	ND	ND
1,2-diphenylhydrazine		UG/L	ND	ND	ND	ND
2,4-dinitrotoluene		UG/L	ND	ND	ND	ND
2,6-dinitrotoluene		UG/L	ND	ND	ND	ND
Dibenzo(A,H)anthracene	1.01		ND	ND	ND	ND
Diethyl phthalate		UG/L	7.3	9.0	8.6	8.9
Dimethyl phthalate	1.44	•	ND	ND	ND	ND
Di-n-butyl phthalate		UG/L	ND	ND	ND	ND
Di-n-octyl phthalate	1	UG/L	ND	ND	ND	ND
2-chloronaphthalene		UG/L	ND	ND	ND	ND
3,3-dichlorobenzidine		UG/L	ND	ND	ND	ND
3,4-benzo(B)fluoranthene		UG/L	ND	ND	ND	ND
4-bromophenyl phenyl ether		UG/L	ND	ND	ND	ND
4-chlorophenyl phenyl ether		UG/L	ND	ND	ND	ND
Hexachloroethane		UG/L	ND	ND	ND	ND
Hexachlorobenzene	1.48		ND	ND	ND	ND
Hexachlorobutadiene		UG/L	ND	ND	ND	ND
Hexachlorocyclopentadiene		UG/L	ND	ND	ND	ND
Acenaphthene		UG/L	ND	ND	ND	ND
Acenaphthylene		UG/L	ND	ND	ND	ND
Anthracene Bis-(2-chloroisopropyl) ether	1.29 1.16		ND ND	ND	ND ND	ND ND
` ' ' ' ' ' ' '		,		ND		
Bis-(2-ethylhexyl) phthalate Benzidine		UG/L UG/L	9.1	ND	ND ND	14.6 ND
		UG/L	ND ND	ND ND	ND ND	ND ND
Benzo[A]anthracene		UG/L		ND ND	ND ND	ND ND
Benzo[A]pyrene			ND ND		ND ND	ND ND
Benzo[G,H,I]perylene	1.09	•	ND ND	ND		
Benzo[K]fluoranthene		UG/L	ND ND	ND ND	ND ND	ND ND
<pre>bis(2-chloroethoxy)methane bis(2-chloroethyl) ether</pre>		UG/L UG/L	ND ND	ND ND	ND ND	ND ND
Butyl benzyl phthalate	2.84	•	ND ND	ND ND	ND ND	ND ND
Chrysene	1.16		ND ND	ND ND	ND ND	ND ND
Fluoranthene		UG/L	ND ND	ND ND	ND ND	ND ND
Fluorene		UG/L	ND ND	ND ND	ND ND	ND ND
Indeno(1,2,3-CD)pyrene		UG/L	ND ND	ND ND	ND ND	ND ND
Isophorone		UG/L	ND ND	ND ND	ND ND	ND ND
Naphthalene	1.65	•	ND ND	ND ND	ND ND	ND ND
Nitrobenzene	1.6	•	ND ND	ND ND	ND ND	ND ND
N-nitrosodimethylamine		UG/L	ND ND	ND ND	ND ND	ND ND
N-nitrosodiphenylamine		UG/L	ND ND	ND ND	ND ND	ND ND
N-nitrosodi-n-propylamine		UG/L	ND ND	ND ND	ND ND	ND ND
Phenanthrene	1.34		ND ND	ND ND	ND ND	ND ND
Pyrene	1.43	•	ND ND	ND ND	ND ND	ND ND
=======================================						=========
Polynuc. Aromatic Hydrocarbons			0.0	0.0	0.0	0.0
			========	========	========	
Base/Neutral Compounds	8.96	UG/L	16.4	9.0	8.6	23.5
Additional analytes determined						
=======================================		=====	=========	=========	=========	=========
1-methylnaphthalene		UG/L	ND	ND	ND	ND
2-methylnaphthalene		UG/L	ND	ND	ND	ND
2,6-dimethylnaphthalene	2.16		ND	ND	ND	ND
2,3,5-trimethylnaphthalene		UG/L	ND	ND	ND	ND
1-methylphenanthrene		UG/L	ND	ND	ND	ND
Benzo[e]pyrene	1.44		ND	ND	ND	ND
Perylene	1.41		ND	ND	ND	ND
Biphenyl	2.29		ND	ND	ND	ND
Pyridine		UG/L	ND	ND	ND	ND

NA= Not Analyzed

ND= Not Detected

2009

Base/Neutral Compounds

					RN34-REC WATER	
Analyte	MDL	Units	03-FEB-2009 P458422	05-MAY-2009 P468706	04-AUG-2009 P481235	06-0CT-2009 P490507
1,2,4-trichlorobenzene		UG/L	ND	ND	ND	ND
1,2-diphenylhydrazine		UG/L	ND	ND	ND	ND
2,4-dinitrotoluene	1.36	UG/L	ND	ND	ND	ND
2,6-dinitrotoluene	1.53	UG/L	ND	ND	ND	ND
Dibenzo(A,H)anthracene		UG/L	ND	ND	ND	ND
Diethyl phthalate		UG/L	ND	ND	ND	ND
Dimethyl phthalate		UG/L	ND	ND	ND	ND
Di-n-butyl phthalate Di-n-octyl phthalate	3.96 1	UG/L UG/L	ND ND	ND ND	ND ND	ND ND
2-chloronaphthalene		UG/L	ND ND	ND ND	ND ND	ND ND
3,3-dichlorobenzidine		UG/L	ND	ND ND	ND ND	ND ND
3,4-benzo(B)fluoranthene		UG/L	ND	ND	ND	ND
4-bromophenyl phenyl ether		UG/L	ND	ND	ND	ND
4-chlorophenyl phenyl ether	1.57	UG/L	ND	ND	ND	ND
Hexachloroethane	1.32	UG/L	ND	ND	ND	ND
Hexachlorobenzene	1.48	UG/L	ND	ND	ND	ND
Hexachlorobutadiene		UG/L	ND	ND	ND	ND
Hexachlorocyclopentadiene		UG/L	ND	ND	ND	ND
Acenaphthene		UG/L	ND	ND	ND	ND
Acenaphthylene		UG/L	ND	ND	ND	ND
Anthracene		UG/L	ND	ND	ND	ND
Bis-(2-chloroisopropyl) ether		UG/L UG/L	ND	ND F3.6	ND 15.0	ND 16.7
Bis-(2-ethylhexyl) phthalate Benzidine		UG/L	145.0 ND	53.6 ND	15.0 ND	ND
Benzo[A]anthracene		UG/L	ND ND	ND ND	ND ND	ND ND
Benzo[A]pyrene		UG/L	ND ND	ND ND	ND ND	ND
Benzo[G,H,I]perylene		UG/L	ND	ND	ND	ND
Benzo[K]fluoranthene		UG/L	ND	ND	ND	ND
bis(2-chloroethoxy)methane	1.01	UG/L	ND	ND	ND	ND
bis(2-chloroethyl) ether	1.38	UG/L	ND	ND	ND	ND
Butyl benzyl phthalate	2.84	UG/L	ND	ND	ND	ND
Chrysene		UG/L	ND	ND	ND	ND
Fluoranthene		UG/L	ND	ND	ND	ND
Fluorene		UG/L	ND	ND	ND	ND
Indeno(1,2,3-CD)pyrene		UG/L	ND	ND	ND	ND
Isophorone		UG/L	ND	ND ND	ND ND	ND ND
Naphthalene Nitrobenzene		UG/L UG/L	ND ND	ND ND	ND ND	ND ND
N-nitrosodimethylamine		UG/L	ND ND	ND ND	ND ND	ND ND
N-nitrosodiphenylamine		UG/L	ND ND	ND ND	ND ND	ND ND
N-nitrosodi-n-propylamine		UG/L	ND.	ND	ND	ND
Phenanthrene		UG/L	ND	ND	ND	ND
Pyrene	1.43	UG/L	ND	ND	ND	ND
			========	========	=======================================	========
Polynuc. Aromatic Hydrocarbons			0.0	0.0	0.0	0.0 ======
Base/Neutral Compounds	8.96	UG/L	145.0	53.6	15.0	16.7
Additional analytes determined						
1-methylnaphthalene		UG/L	ND	ND	ND	ND
2-methylnaphthalene		UG/L	ND	ND	ND	ND
2,6-dimethylnaphthalene		UG/L	ND	ND	ND	ND
2,3,5-trimethylnaphthalene		UG/L	ND	ND	ND	ND
1-methylphenanthrene	1.46	UG/L	ND	ND	ND	ND
Benzo[e]pyrene		UG/L	ND	ND	ND	ND
Perylene		UG/L	ND	ND	ND	ND
Biphenyl		UG/L	ND	ND	ND	ND
Pyridine	3.33	UG/L	ND	ND	ND	ND

I:\REPORTS\NCWRP\Annuals\Annual2009\Annual_NC_09.docx

NA= Not Analyzed

ND= Not Detected

2009

Organophosphorous Pesticides

Analyte	WDI	Units	N01-PS_INF 05-MAY-2009 P468691	N01-PS_INF 06-OCT-2009 P490492	N01-PEN 05-MAY-2009 P468696	N01-PEN 06-OCT-2009 P490497
Allatyte		=====	P400091	P490492		P490497
Demeton O	.15	UG/L	ND	ND	ND	ND
Demeton S	.08	UG/L	ND	ND	ND	ND
Diazinon	.03	UG/L	ND	ND	ND	ND
Guthion	.15	UG/L	ND	ND	ND	ND
Malathion	.03	UG/L	ND	ND	0.240	ND
Parathion	.03	UG/L	ND	ND	ND	ND
	===	=====				=========
Thiophosphorus Pesticides		UG/L	0.000	0.000	0.240	0.000
Demeton -O, -S	.15	UG/L	0.000	0.000	0.000	0.000
T + 1 0	===	=====				
Total Organophosphorus Pesticides	. 3	UG/L	0.000	0.000	0.240	0.000
Dichlorvos	===	UG/L	ND	ND	ND	ND
Dibrom		UG/L	ND ND	ND ND	ND ND	ND ND
Ethoprop		UG/L	ND ND	ND ND	ND ND	ND ND
Phorate		UG/L	ND ND	ND ND	ND ND	ND ND
Sulfotepp		UG/L	ND ND	ND ND	ND ND	ND ND
Disulfoton		UG/L	ND.	ND ND	ND ND	ND
Dimethoate		UG/L	ND.	ND	ND	ND
Ronnel		UG/L	ND.	ND	ND	ND
Trichloronate		UG/L	ND	ND	ND	ND
Merphos		UG/L	ND	ND	ND	ND
Dichlofenthion	.03	UG/L	ND	ND	ND	ND
Tokuthion	.06	UG/L	ND	ND	ND	ND
Stirophos	.03	UG/L	ND	ND	ND	ND
Bolstar	.07	UG/L	ND	ND	ND	ND
Fensulfothion	.07	UG/L	ND	ND	ND	ND
EPN	.09	UG/L	ND	ND	ND	ND
Coumaphos	.15	UG/L	ND	ND	ND	ND
Mevinphos, e isomer	.05	UG/L	ND	ND	ND	ND
Mevinphos, z isomer	.3	UG/L	ND	ND	ND	ND
Chlorpyrifos	.03	UG/L	ND	ND	ND	ND

2009

Organophosphorous Pesticides

Analyte	MDL	Units	N10-EFF 05-MAY-2009 P468701	N10-EFF 06-OCT-2009 P490502	N34-REC WATER 05-MAY-2009 P468706	N34-REC WATER 06-OCT-2009 P490507
Demeton O	.15	UG/L	ND	ND	ND	ND
Demeton S		UG/L	ND	ND	ND	ND
Diazinon	.03	UG/L	ND	ND	ND	ND
Guthion	.15	UG/L	ND	ND	ND	ND
Malathion	.03	UG/L	ND	ND	ND	ND
Parathion	.03	UG/L	ND	ND	ND	ND
=======================================	===	=====	=========	=========	=========	=========
Thiophosphorus Pesticides	.15	UG/L	0.000	0.000	0.000	0.000
Demeton -0, -S	.15	UG/L	0.000	0.000	0.000	0.000
=======================================	===	=====				
Total Organophosphorus Pesticides	.3	UG/L	0.000	0.000	0.000	0.000
	===	=====	=========	==========	==========	========
Dichlorvos	.05	UG/L	ND	ND	ND	ND
Dibrom	.2	UG/L	ND	ND	ND	ND
Ethoprop	.04	UG/L	ND	ND	ND	ND
Phorate		UG/L	ND	ND	ND	ND
Sulfotepp		UG/L	ND	ND	ND	ND
Disulfoton		UG/L	ND	ND	ND	ND
Dimethoate		UG/L	ND	ND	ND	ND
Ronnel		UG/L	ND	ND	ND	ND
Trichloronate		UG/L	ND	ND	ND	ND
Merphos		UG/L	ND	ND	ND	ND
Dichlofenthion		UG/L	ND	ND	ND	ND
Tokuthion		UG/L	ND	ND	ND	ND
Stirophos		UG/L	ND	ND	ND	ND
Bolstar		UG/L	ND	ND	ND	ND
Fensulfothion		UG/L	ND	ND	ND	ND
EPN		UG/L	ND	ND	ND	ND
Coumaphos		UG/L	ND	ND	ND	ND
Mevinphos, e isomer		UG/L	ND	ND	ND	ND
Mevinphos, z isomer		UG/L	ND	ND	ND	ND
Chlorpyrifos	.03	UG/L	ND	ND	ND	ND

2009

Phenolic Compounds

Analyte		Units	N01-PS_INF 03-FEB-2009 P458407	N01-PS_INF 05-MAY-2009 P468691	N01-PS_INF 04-AUG-2009 P481220	N01-PS_INF 06-OCT-2009 P490492
2,4,6-trichlorophenol		===== UG/L	ND	ND	ND	ND
2,4-dichlorophenol		UG/L	ND ND	ND ND	ND ND	ND ND
2,4-dimethylphenol		UG/L	ND ND	ND ND	ND ND	ND ND
2,4-dinitrophenol		UG/L	ND ND	ND ND	ND ND	ND ND
2-methyl-4,6-dinitrophenol		UG/L	ND	ND	ND	ND
2-chlorophenol		UG/L	ND	ND	ND	ND
2-nitrophenol		UG/L	ND	ND	ND	ND
4-chloro-3-methylphenol		UG/L	ND	ND	ND	ND
4-nitrophenol		UG/L	ND	ND	ND	ND
Pentachlorophenol		UG/L	ND	ND	ND	ND
Phenol	1.76	UG/L	24.60	24.40	20.60	7.70
	====	=====	=======================================		=========	=========
Total Non-Chlorinated Phenols	2.16	UG/L	24.60	24.40	20.60	7.70
Total Chlorinated Phenols	1.67	UG/L	0.00	0.00	0.00	0.00
	====		=======================================	=========	==========	==========
Phenols	2.16	UG/L	24.60	24.40	20.60	7.70
Additional analytes determined;						
	====	=====	=======================================	=========	=========	=========
2-methylphenol	2.15	UG/L	ND	ND	ND	ND
3-methylphenol(4-MP is unresolved)		UG/L	NA	NA	NA .	NA
4-methylphenol(3-MP is unresolved)			69.80	67.00	37.30	49.70
2,4,5-trichlorophenol	1.66	UG/L	ND	ND	ND	ND
Analyte	MDL	Units	N01-PEN 03-FEB-2009 P458412	N01-PEN 05-MAY-2009 P468696	N01-PEN 04-AUG-2009 P481225	N01-PEN 06-OCT-2009 P490497
Analyte			03-FEB-2009 P458412	05-MAY-2009 P468696	04-AUG-2009 P481225	06-0CT-2009
	====		03-FEB-2009 P458412	05-MAY-2009 P468696	04-AUG-2009 P481225	06-0CT-2009 P490497
	==== 1.65	=====	03-FEB-2009 P458412	05-MAY-2009 P468696	04-AUG-2009 P481225	06-0CT-2009 P490497
2,4,6-trichlorophenol	1.65 1.01	===== UG/L	03-FEB-2009 P458412 ====================================	05-MAY-2009 P468696 ======	04-AUG-2009 P481225 ======ND	06-OCT-2009 P490497 ======ND
2,4,6-trichlorophenol 2,4-dichlorophenol	1.65 1.01 2.01	===== UG/L UG/L	03-FEB-2009 P458412 ====================================	05-MAY-2009 P468696 ===== ND ND	04-AUG-2009 P481225 ======ND ND	06-0CT-2009 P490497 ====== ND ND
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol	1.65 1.01 2.01 2.16	===== UG/L UG/L UG/L	03-FEB-2009 P458412 	05-MAY-2009 P468696 ND ND ND	04-AUG-2009 P481225 ====== ND ND ND	06-OCT-2009 P490497 ======= ND ND ND
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol	1.65 1.01 2.01 2.16 1.52	===== UG/L UG/L UG/L UG/L	03-FEB-2009 P458412 ============ ND ND ND ND ND	05-MAY-2009 P468696 ====== ND ND ND ND ND	04-AUG-2009 P481225 ======= ND ND ND ND ND	06-OCT-2009 P490497 ======== ND ND ND ND ND
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-chlorophenol 2-nitrophenol	1.65 1.01 2.01 2.16 1.52 1.32	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L	03-FEB-2009 P458412	05-MAY-2009 P468696 ND	04-AUG-2009 P481225 =========== ND	06-OCT-2009 P490497 ND
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-chlorophenol 2-nitrophenol 4-chloro-3-methylphenol	1.65 1.01 2.01 2.16 1.52 1.32 1.55	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	03-FEB-2009 P458412	05-MAY-2009 P468696 ND	04-AUG-2009 P481225 ========== ND	06-OCT-2009 P490497 ND
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,-dinitrophenol 2-methyl-4,6-dinitrophenol 2-chlorophenol 2-nitrophenol 4-chloro-3-methylphenol 4-nitrophenol	1.65 1.01 2.01 2.16 1.52 1.32 1.55 1.67	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	03-FEB-2009 P458412	05-MAY-2009 P468696 ND	04-AUG-2009 P481225 ===================================	06-OCT-2009 P490497
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-nitrophenol 4-chloro-3-methylphenol 4-nitrophenol Pentachlorophenol	1.65 1.01 2.01 2.16 1.52 1.32 1.55 1.67 1.14	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	03-FEB-2009 P458412	05-MAY-2009 P468696 ND	04-AUG-2009 P481225 ======== ND	06-OCT-2009 P490497
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,-dinitrophenol 2-methyl-4,6-dinitrophenol 2-nitrophenol 4-chloro-3-methylphenol 4-nitrophenol Pentachlorophenol Phenol	1.65 1.01 2.01 2.16 1.52 1.32 1.55 1.67 1.14 1.12	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	03-FEB-2009 P458412	05-MAY-2009 P468696 ND	04-AUG-2009 P481225 ======== ND	06-OCT-2009 P490497
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-nitrophenol 4-chloro-3-methylphenol 4-nitrophenol Pentachlorophenol Phenol Phenol	1.65 1.01 2.01 2.16 1.52 1.32 1.55 1.67 1.14 1.12 1.76	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	03-FEB-2009 P458412 ND	05-MAY-2009 P468696 ND	04-AUG-2009 P481225 ===================================	06-OCT-2009 P490497
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-nitrophenol 4-chloro-3-methylphenol 4-nitrophenol Pentachlorophenol Phenol Total Non-Chlorinated Phenols	 1.65 1.01 2.01 2.16 1.52 1.32 1.55 1.67 1.14 1.12 1.76 2.16	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	03-FEB-2009 P458412 ND	05-MAY-2009 P468696 ND	04-AUG-2009 P481225	06-OCT-2009 P490497
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-nitrophenol 2-nitrophenol 4-chloro-3-methylphenol 4-nitrophenol Pentachlorophenol Phenol Total Non-Chlorinated Phenols Total Chlorinated Phenols	==== 1.65 1.01 2.01 2.16 1.52 1.55 1.67 1.14 1.12 1.76 ==== 2.16 1.67	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	03-FEB-2009 P458412 ND	05-MAY-2009 P468696 ND	04-AUG-2009 P481225	06-OCT-2009 P490497 ND
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-nitrophenol 4-chloro-3-methylphenol 4-nitrophenol Pentachlorophenol Phenol Total Non-Chlorinated Phenols	==== 1.65 1.01 2.01 2.16 1.52 1.32 1.55 1.67 1.14 1.12 1.76 ==== 2.16 1.67	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	03-FEB-2009 P458412 ND	05-MAY-2009 P468696 ND	04-AUG-2009 P481225	06-OCT-2009 P490497 ND
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-nitrophenol 4-chloro-3-methylphenol 4-nitrophenol Pentachlorophenol Phenol Total Non-Chlorinated Phenols Total Chlorinated Phenols	==== 1.65 1.01 2.01 2.16 1.52 1.32 1.55 1.67 1.14 1.12 1.76 ==== 2.16 1.67	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	03-FEB-2009 P458412 ND	05-MAY-2009 P468696 ND	04-AUG-2009 P481225	06-OCT-2009 P490497
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-nitrophenol 4-chloro-3-methylphenol 4-nitrophenol Pentachlorophenol Phenol Total Non-Chlorinated Phenols Total Chlorinated Phenols ====================================	==== 1.65 1.01 2.01 2.16 1.52 1.32 1.55 1.67 1.14 1.76 ==== 2.16	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	03-FEB-2009 P458412 ND	05-MAY-2009 P468696 ND	04-AUG-2009 P481225	06-OCT-2009 P490497
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-nitrophenol 4-chloro-3-methylphenol 4-nitrophenol Pentachlorophenol Phenol Total Non-Chlorinated Phenols Total Chlorinated Phenols Total Chlorinated Phenols	==== 1.65 1.01 2.01 2.16 1.52 1.32 1.55 1.67 1.14 1.12 1.76 ==== 2.16 1.67 ====	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	03-FEB-2009 P458412 ND	05-MAY-2009 P468696 ND	04-AUG-2009 P481225	06-OCT-2009 P490497
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,methyl-4,6-dinitrophenol 2-nitrophenol 2-nitrophenol 4-chloro-3-methylphenol 4-nitrophenol Pentachlorophenol Phenol	==== 1.65 1.01 2.01 2.16 1.52 1.32 1.55 1.67 1.14 1.12 1.76 ==== 2.16	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	03-FEB-2009 P458412 ND	05-MAY-2009 P468696 ND	04-AUG-2009 P481225 ===================================	06-OCT-2009 P490497
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-nitrophenol 4-chloro-3-methylphenol 4-nitrophenol Pentachlorophenol Phenol Total Non-Chlorinated Phenols Total Chlorinated Phenols Total Chlorinated Phenols	==== 1.65 1.01 2.01 2.16 1.52 1.32 1.55 1.14 1.12 1.76 ==== 2.16 1.67 ==== 2.16	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	03-FEB-2009 P458412 ND	05-MAY-2009 P468696 ND	04-AUG-2009 P481225	06-OCT-2009 P490497

ND= not detectedNA= Not AnalyzedNS= Not Sampled, NR= Not Required

2009

Phenolic Compounds

			N10-EFF	N10-EFF	N10-EFF	N10-EFF
			03-FEB-2009	05-MAY-2009	04-AUG-2009	06-0CT-2009
Analyte	MDL	Units	P458417	P468701	P481230	P490502
	====	=====	==========	=========	=========	==========
2,4,6-trichlorophenol		UG/L	ND	ND	ND	ND
2,4-dichlorophenol		UG/L	ND	ND	ND	ND
2,4-dimethylphenol		UG/L	ND	ND	ND	ND
2,4-dinitrophenol	2.16	UG/L	ND	ND	ND	ND
2-methyl-4,6-dinitrophenol	1.52	UG/L	ND	ND	ND	ND
2-chlorophenol	1.32	UG/L	ND	ND	ND	ND
2-nitrophenol	1.55	UG/L	ND	ND	ND	ND
4-chloro-3-methylphenol	1.67	UG/L	ND	ND	ND	ND
4-nitrophenol	1.14	UG/L	ND	ND	ND	ND
Pentachlorophenol	1.12	UG/L	ND	ND	ND	ND
Phenol	1.76	UG/L	14.60	17.40	14.30	31.00
	====	=====	=========	=========	=========	=========
Total Non-Chlorinated Phenols	2.16	UG/L	14.60	17.40	14.30	31.00
Total Chlorinated Phenols	1.67	UG/L	0.00	0.00	0.00	0.00
Phenols	2.16	UG/L	14.60	17.40	14.30	31.00
Additional analytes determined;						
=======================================	==== :	====	=======================================	:======================================	:======== :	========
2-methylphenol	2.15	UG/L	ND	ND	ND	ND
3-methylphenol(4-MP is unresolved)		UG/L	NA	NA	NA	NA
4-methylphenol(3-MP is unresolved)	2.11		37.80	41.20	22.20	30.10
2,4,5-trichlorophenol		UG/L	ND	ND	ND	ND
2,4,5 critical opticalor	1.00	00/ L	ND	ND	ND	ND
			N34-REC WATER	N34-REC WATER	N34-REC WATER	N34-REC WATER
			03-FFR-2009	05-MAV-2009	04-AHG-2009	96-0CT-2999
Analyte	MDI	Uni+c	03-FEB-2009	05-MAY-2009	04-AUG-2009	06-0CT-2009
Analyte	MDL	Units	P458422	05-MAY-2009 P468706	P481235	06-0CT-2009 P490507
	====	=====	P458422	P468706	P481235	P490507
2,4,6-trichlorophenol	1.65	===== UG/L	P458422 ======= ND	P468706 ====== ND	P481235 ======= ND	P490507 ====== ND
2,4,6-trichlorophenol 2,4-dichlorophenol	1.65 1.01	===== UG/L UG/L	P458422 ====== ND ND	P468706 ====== ND ND	P481235 ====== ND ND	P490507 ====== ND ND
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol	1.65 1.01 2.01	===== UG/L UG/L UG/L	P458422 ND ND ND	P468706 ====== ND ND ND	P481235 ====== ND ND ND	P490507 ======= ND ND ND
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol	1.65 1.01 2.01 2.16	===== UG/L UG/L UG/L UG/L	P458422 ===================================	P468706 ND ND ND ND ND	P481235 ============ ND ND ND ND	P490507 ND ND ND ND ND
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol	1.65 1.01 2.01 2.16 1.52	===== UG/L UG/L UG/L UG/L UG/L	P458422	P468706 ND ND ND ND ND ND	P481235 ND ND ND ND ND ND	P490507 ND ND ND ND ND ND ND ND
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-chlorophenol	1.65 1.01 2.01 2.16 1.52 1.32	===== UG/L UG/L UG/L UG/L UG/L UG/L	P458422	P468706 ====================================	P481235 ND ND ND ND ND ND ND ND ND	P490507 ND
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-chlorophenol 2-nitrophenol	1.65 1.01 2.01 2.16 1.52 1.32	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L	P458422	P468706 ====================================	P481235	P490507
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-chlorophenol 2-nitrophenol 4-chloro-3-methylphenol	1.65 1.01 2.01 2.16 1.52 1.32 1.55	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	P458422	P468706 ====================================	P481235	P490507
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,-dinitrophenol 2-methyl-4,6-dinitrophenol 2-chlorophenol 2-nitrophenol 4-chloro-3-methylphenol 4-nitrophenol	1.65 1.01 2.01 2.16 1.52 1.32 1.55 1.67	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	P458422	P468706 ====================================	P481235	P490507
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2-dinitrophenol 2-methyl-4,6-dinitrophenol 2-chlorophenol 2-nitrophenol 4-chloro-3-methylphenol 4-nitrophenol Pentachlorophenol	1.65 1.01 2.01 2.16 1.52 1.32 1.55 1.67 1.14	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	P458422	P468706	P481235	P490507
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,-dinitrophenol 2-methyl-4,6-dinitrophenol 2-chlorophenol 2-nitrophenol 4-chloro-3-methylphenol 4-nitrophenol Pentachlorophenol Phenol	1.65 1.01 2.01 2.16 1.52 1.32 1.55 1.67 1.14 1.12	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	P458422	P468706 ====================================	P481235	P490507
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-nitrophenol 4-chloro-3-methylphenol 4-nitrophenol Pentachlorophenol Phenol Phenol ====================================	1.65 1.01 2.01 2.16 1.52 1.32 1.55 1.67 1.14 1.12 1.76	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	P458422	P468706	P481235	P490507
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-chlorophenol 2-nitrophenol 4-chloro-3-methylphenol 4-nitrophenol Pentachlorophenol Phenol Total Non-Chlorinated Phenols	1.65 1.01 2.01 2.16 1.52 1.32 1.55 1.67 1.14 1.12 1.76 ==== 2.16	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	P458422	P468706	P481235	P490507
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-nitrophenol 4-chloro-3-methylphenol 4-nitrophenol Pentachlorophenol Phenol Phenol ====================================	==== 1.65 1.01 2.01 2.16 1.52 1.55 1.67 1.14 1.12 1.76 ==== 2.16 1.67	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	P458422	P468706	P481235	P490507
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-chlorophenol 2-nitrophenol 4-chloro-3-methylphenol 4-nitrophenol Pentachlorophenol Phenol ====================================	==== 1.65 1.01 2.01 2.16 1.52 1.32 1.55 1.67 1.14 1.12 1.76 ==== 2.16 1.67	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	P458422	P468706	P481235	P490507
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-nitrophenol 2-nitrophenol 4-chloro-3-methylphenol 4-nitrophenol Pentachlorophenol Phenol Total Non-Chlorinated Phenols Total Chlorinated Phenols	==== 1.65 1.01 2.01 2.16 1.52 1.32 1.55 1.67 1.14 1.12 1.76 ==== 2.16 1.67	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	P458422	P468706	P481235	P490507
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-chlorophenol 2-nitrophenol 4-chloro-3-methylphenol 4-nitrophenol Pentachlorophenol Phenol ====================================	==== 1.65 1.01 2.01 2.16 1.52 1.32 1.55 1.67 1.14 1.12 1.76 ==== 2.16 1.67	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	P458422	P468706	P481235	P490507
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-chlorophenol 2-nitrophenol 4-chloro-3-methylphenol 4-nitrophenol Pentachlorophenol Phenol ====================================	==== 1.65 1.01 2.01 2.16 1.52 1.32 1.55 1.67 1.14 1.12 1.76 ==== 2.16 1.67	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	P458422	P468706	P481235	P490507
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-nitrophenol 4-chloro-3-methylphenol 4-nitrophenol Pentachlorophenol Phenol Total Non-Chlorinated Phenols Total Chlorinated Phenols ====================================	==== 1.65 1.01 2.01 2.16 1.52 1.32 1.55 1.67 1.14 1.12 1.76 ==== 2.16 1.67	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	P458422	P468706	P481235	P490507
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-nitrophenol 4-chloro-3-methylphenol 4-nitrophenol Pentachlorophenol Phenol Total Non-Chlorinated Phenols Total Chlorinated Phenols Thenols Additional analytes determined;	==== 1.65 1.01 2.01 2.16 1.52 1.32 1.55 1.67 1.14 1.12 2.16 1.67 ==== 2.16	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	P458422	P468706	P481235	P490507
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,-dinitrophenol 2-methyl-4,6-dinitrophenol 2-nitrophenol 2-nitrophenol 4-chloro-3-methylphenol 4-nitrophenol Pentachlorophenol Phenol	==== 1.65 1.01 2.01 2.16 1.52 1.32 1.55 1.14 1.12 1.76 ==== 2.16 1.67 ====	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	P458422	P468706	P481235	P490507
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-nitrophenol 2-nitrophenol 4-chloro-3-methylphenol 4-nitrophenol Pentachlorophenol Phenol ====================================	==== 1.65 1.01 2.01 2.16 1.52 1.32 1.55 1.14 1.12 1.76 ==== 2.16 1.67 ====	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	P458422	P468706	P481235	P490507
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-nitrophenol 2-nitrophenol 4-chloro-3-methylphenol 4-nitrophenol Pentachlorophenol Phenol ====================================	==== 1.65 1.01 2.01 2.16 1.52 1.55 1.67 1.14 1.12 1.76 ==== 2.16	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	P458422	P468706	P481235	P490507
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-chlorophenol 2-nitrophenol 4-chloro-3-methylphenol 4-nitrophenol Pentachlorophenol Phenol ====================================	==== 1.65 1.01 2.01 2.16 1.52 1.55 1.67 1.14 1.12 1.76 ==== 2.16	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	P458422	P468706	P481235	P490507
2,4,6-trichlorophenol 2,4-dichlorophenol 2,4-dimethylphenol 2,4-dinitrophenol 2,4-dinitrophenol 2-methyl-4,6-dinitrophenol 2-nitrophenol 2-nitrophenol 4-chloro-3-methylphenol 4-nitrophenol Pentachlorophenol Phenol ====================================	==== 1.65 1.01 2.01 2.16 1.52 1.55 1.67 1.14 1.12 1.76 ==== 2.16	===== UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	P458422	P468706	P481235	P490507

ND= not detectedNA= Not AnalyzedNS= Not Sampled, NR= Not Required

POINT LOMA WASTEWATER TREATMENT PLANT Annual Monitoring Report

2009 Priority Pollutants Purgeable Compounds, EPA Method 624

Analysis	MDI	llade.	N01-PS_INF 03-FEB-2009	N01-PS_INF 05-MAY-2009	N01-PS_INF 04-AUG-2009	N01-PS_INF 06-OCT-2009
Analyte		Units	P458410	P468694	P481223	P490495
Chloromethane	.5	UG/L	ND	ND	ND	ND
Bromomethane	.7	UG/L	ND	ND	ND	ND
Vinyl chloride	.4	UG/L	ND	ND	ND	ND
Chloroethane	.9	UG/L	ND	ND	ND	ND
1,1-dichloroethane	.4	UG/L	ND	ND	ND	ND
Trichlorofluoromethane	.3	UG/L	ND	ND	ND	ND .
Methylene chloride	.3	UG/L	1.3*	1.2	1.9	1.7*
1,1-dichloroethene	.4	UG/L	ND	ND	ND	ND
trans-1,2-dichloroethene Chloroform	.6	UG/L UG/L	ND	ND	ND	ND
	.2 .5	UG/L UG/L	2.4 0.5	6.9 ND	2.5 ND	1.4 ND
<pre>1,2-dichloroethane 1,1,1-trichloroethane</pre>	.4	UG/L	ND	ND ND	ND ND	ND ND
Carbon tetrachloride	.4	UG/L	ND ND	ND ND	ND ND	ND ND
Bromodichloromethane	.5	UG/L	ND ND	ND ND	ND ND	ND ND
1,2-dichloropropane	.3	UG/L	ND ND	ND	ND	ND
trans-1,3-dichloropropene	.5	UG/L	ND	ND	ND	ND
Trichloroethene	.7	UG/L	ND	ND	ND	ND
Benzene	.4	UG/L	ND	ND	ND	ND
Dibromochloromethane	.6	UG/L	ND	ND	ND	ND
1,1,2-trichloroethane	.5	UG/L	ND	ND	ND	ND
cis-1,3-dichloropropene	.3	UG/L	ND	ND	ND	ND
2-chloroethylvinyl ether	1.1	UG/L	ND	ND	ND	ND
Bromoform	.5	UG/L	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	.5	UG/L	ND	ND	ND	ND
Tetrachloroethene		UG/L	ND	ND	ND	5.4
Chlorobenzene	.4	UG/L	ND	ND	ND	ND
Toluene	.4	UG/L	0.6	0.5	0.6	0.5
Ethylbenzene	.3	UG/L	ND	ND	ND	ND
Acrylonitrile	.7	UG/L	ND	ND	ND	ND
Acrolein		UG/L	ND	ND	ND	ND
1,2-dichlorobenzene	.4	UG/L	ND ND	ND 0.6	ND 0.6	ND ND
<pre>1,4-dichlorobenzene 1,3-dichlorobenzene</pre>	.4 .5	UG/L UG/L	ND ND	ND	ND	ND ND
Dichlorodifluoromethane		UG/L	ND ND	ND ND	ND ND	ND ND
=======================================			========	========	ND	IND
Halomethane Purgeable Cmpnds			0.0	0.0	0.0	0.0
Purgeable Compounds		UG/L	3.5	8.6	5.0	7.3
=======================================			========	========	========	========
Total Dichlorobenzenes	.5	UG/L	0.0	0.6	0.6	0.0
Additional analytes determin	ed;					
	===		========	========	========	========
Allyl chloride	.6	UG/L	ND	ND	ND	ND
4-methyl-2-pentanone		UG/L	ND	ND	ND	ND
meta,para xylenes	.6	UG/L	ND	ND	ND	ND
Styrene	.3	UG/L	ND	ND	ND	ND
1,2,4-trichlorobenzene	.7	UG/L	ND	ND ND	ND	ND
Methyl Iodide	.6	UG/L	ND	ND	ND	ND
Chloroprene	.4	UG/L	ND	ND	ND	ND
Methyl methacrylate	.8 12	UG/L	ND ND	ND ND	ND ND	ND ND
2-nitropropane 1,2-dibromoethane	.3	UG/L UG/L	ND ND	ND ND	עא ND	ND ND
Isopropylbenzene	.3	UG/L	ND ND	ND ND	ND ND	ND ND
Benzyl chloride		UG/L	ND ND	ND ND	ND ND	ND ND
ortho-xylene		UG/L	ND ND	ND ND	ND ND	ND ND
Acetone		UG/L	1860.0	648.0	731.0	152.0
Carbon disulfide		UG/L	1.6	1.8	1.5	0.8
2-butanone		UG/L	ND	ND	ND	ND
Methyl tert-butyl ether		UG/L	ND	ND	ND	ND

ND= not detected, NA= not analyzed, NS= not sampled

^{* =}Blank did not meet QC criteria; Analyte above MDL. Methylene chloride levels 0.36, 0.72, and 0.73 ug/L in blank in Feb, May, and Oct respectively.

POINT LOMA WASTEWATER TREATMENT PLANT Annual Monitoring Report

2009

Priority Pollutants Purgeable Compounds, EPA Method 624

			N01-PEN 03-FEB-2009	N01-PEN 05-MAY-2009	N01-PEN 04-AUG-2009	N01-PEN 06-OCT-2009
Analyte	MDL	Units	P458415	P468699	P481228	P490500
=======================================			========	========	========	========
Chloromethane	.5	UG/L	ND	ND	ND	ND
Bromomethane	.7	UG/L	ND	ND	ND	ND
Vinyl chloride	.4	UG/L	ND	ND	ND	ND
Chloroethane	.9	UG/L	ND	ND	ND	ND
1,1-dichloroethane	.4	UG/L	ND	ND	ND	ND
Trichlorofluoromethane	.3	UG/L	ND	ND	ND	ND
Methylene chloride	.3	UG/L	1.3*	1.5*	1.2	1.3*
1,1-dichloroethene	.4	UG/L	ND	ND	ND	ND
trans-1,2-dichloroethene	.6	UG/L	ND	ND	ND	ND
Chloroform	.2	UG/L	2.1	2.3	2.5	1.5
1,2-dichloroethane	.5	UG/L	ND	ND	ND	ND
1,1,1-trichloroethane	.4	UG/L	ND	ND	ND	ND
Carbon tetrachloride	.4	UG/L	ND	ND	ND	ND
Bromodichloromethane	.5	UG/L	ND	ND	ND	ND
1,2-dichloropropane	.3	UG/L	ND	ND	ND	ND
trans-1,3-dichloropropene	.5	UG/L	ND	ND	ND	ND
Trichloroethene	.7	UG/L	ND	ND	ND	ND
Benzene	.4	UG/L	ND	ND	ND	ND
Dibromochloromethane	.6	UG/L	ND	ND	ND	ND
1,1,2-trichloroethane	.5	UG/L	ND	ND	ND	ND
cis-1,3-dichloropropene	.3	UG/L	ND	ND	ND	ND
2-chloroethylvinyl ether		UG/L	ND	ND	ND	ND
Bromoform	.5	UG/L	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	.5	UG/L	ND	ND	ND ND	ND
Tetrachloroethene Chlorobenzene	.4	UG/L	28.2 ND	ND ND	ND ND	ND ND
Toluene	.4	UG/L UG/L	0.7	1.3	0.7	46.5
Ethylbenzene	.3	UG/L	VD	ND	VD	46.3 ND
Acrylonitrile	.7	UG/L	ND ND	ND ND	ND ND	ND ND
Acrolein		UG/L	ND ND	ND ND	ND ND	ND ND
1,2-dichlorobenzene	.4	UG/L	ND ND	ND ND	ND ND	ND ND
1,4-dichlorobenzene	.4	UG/L	ND ND	0.6*	0.4	ND ND
1,3-dichlorobenzene	.5	UG/L	ND ND	ND	ND	ND ND
Dichlorodifluoromethane		UG/L	ND ND	ND ND	ND	ND ND
=======================================			=========	========	=========	========
Halomethane Purgeable Cmpnds	.7	UG/L	0.0	0.0	0.0	0.0
Purgeable Compounds		UG/L	31.0	3.6	4.4	48.0
	===	=====	========	========	========	========
Total Dichlorobenzenes	.5	UG/L	0.0	0.0	0.4	0.0
Additional analytes determin	-					
Allyl chlonido		UG/L	ND	ND	ND	ND
Allyl chloride	.6	UG/L	ND ND	ND ND	ND ND	ND ND
4-methyl-2-pentanone meta,para xylenes	.6	UG/L	ND ND	ND ND	ND ND	ND ND
			ND ND	ND ND	ND ND	ND ND
Styrene 1,2,4-trichlorobenzene	.3 .7	UG/L UG/L	ND ND	ND ND	ND ND	ND ND
Methyl Iodide	.6	UG/L	ND ND	ND ND	ND ND	ND ND
Chloroprene	.4	UG/L	ND ND	ND ND	ND ND	ND ND
Methyl methacrylate	.8	UG/L	ND ND	ND ND	ND ND	ND ND
2-nitropropane	12	UG/L	ND ND	ND ND	ND ND	ND ND
1,2-dibromoethane	.3	UG/L	ND ND	ND ND	ND ND	ND ND
Isopropylbenzene	.3	UG/L	ND ND	ND ND	ND ND	ND ND
Benzyl chloride		UG/L	ND ND	ND ND	ND ND	ND ND
ortho-xylene		UG/L	ND ND	ND ND	ND ND	ND ND
Acetone		UG/L	663.0	217.0	215.0	126.0
Carbon disulfide		UG/L	1.5	4.9	3.4	3.0
2-butanone		UG/L	8.1	7.4	8.4	ND
Methyl tert-butyl ether		UG/L	ND	ND	ND	ND
,						

ND= not detected, NA= not analyzed, NS= not sampled
* =Blank did not meet QC criteria; Analyte above MDL. Methylene chloride levels 0.36, 0.72, and 0.73 ug/L in blank in Feb, May, and Oct respectively. 1,4-dichlorobenzene level 0.4 ug/L.

POINT LOMA WASTEWATER TREATMENT PLANT Annual Monitoring Report

2009

Priority Pollutants Purgeable Compounds, EPA Method 624

Analyte 		Units	N10-EFF 03-FEB-2009 P458420	N10-EFF 05-MAY-2009 P468704	N10-EFF 04-AUG-2009 P481233	N10-EFF 06-OCT-2009 P490505
Chloromethane	.5	UG/L	ND	ND	ND	ND
Bromomethane	.7	UG/L	ND	ND	ND	ND
Vinyl chloride	.4	UG/L	ND	ND	ND	ND
Chloroethane	.9	UG/L	ND	ND	ND	ND
1,1-dichloroethane	.4	UG/L	ND	ND	ND	ND
Trichlorofluoromethane	.3	UG/L	ND	ND	ND	ND
Methylene chloride	.3	UG/L	1.7*	2.2	1.7	2.5*
1,1-dichloroethene	.4	UG/L	ND	ND	ND	ND
trans-1,2-dichloroethene	.6	UG/L	ND	ND	ND	ND
Chloroform	.2	UG/L	2.4	6.0	3.0	2.6
1,2-dichloroethane	.5	UG/L	ND	ND	ND	ND
1,1,1-trichloroethane	.4	UG/L	ND	ND	ND	ND
Carbon tetrachloride Bromodichloromethane	.4 .5	UG/L UG/L	ND ND	ND ND	ND ND	ND ND
1,2-dichloropropane	.3	UG/L	ND ND	ND ND	ND ND	ND ND
trans-1,3-dichloropropene	.5	UG/L	ND ND	ND ND	ND ND	ND ND
Trichloroethene	.7	UG/L	ND ND	ND ND	ND ND	ND ND
Benzene	.4	UG/L	ND ND	ND ND	ND ND	ND ND
Dibromochloromethane	.6	UG/L	ND ND	ND ND	ND	ND ND
1,1,2-trichloroethane	.5	UG/L	ND ND	ND	ND	ND
cis-1,3-dichloropropene	.3	UG/L	ND	ND	ND	ND
2-chloroethylvinyl ether		UG/L	ND	ND	ND	ND
Bromoform	.5	UG/L	ND	ND	ND	ND
1,1,2,2-tetrachloroethane	.5	UG/L	ND	ND	ND	ND
Tetrachloroethene		UG/L	8.9	ND	ND	5.8
Chlorobenzene	.4	UG/L	ND	ND	ND	ND
Toluene	.4	UG/L	1.2	0.9	1.3	1.3
Ethylbenzene	.3	UG/L	ND	ND	ND	ND
Acrylonitrile	.7	UG/L	ND	ND	ND	ND
Acrolein	1.3	UG/L	ND	ND	ND	ND
1,2-dichlorobenzene	.4	UG/L	ND	ND	ND	ND
1,4-dichlorobenzene	.4	UG/L	ND	0.7	0.6	ND
1,3-dichlorobenzene	.5		ND	ND	ND	ND
Dichlorodifluoromethane		UG/L	ND	ND	ND	ND
=======================================		=====	========	========	========	========
Halomethane Purgeable Cmpnds			0.0	0.0	0.0	0.0
Purgeable Compounds		UG/L	12.5	9.1	6.0	9.7
Total Dichlorobenzenes	.5	UG/L	0.0	0.7	0.6	0.0
Additional analytes determin						
Allyl chloride	.6		ND	ND	ND	ND
4-methyl-2-pentanone		UG/L	ND ND	ND ND	ND	ND ND
meta,para xylenes	.6	UG/L	0.8	ND ND	0.7	ND ND
Styrene	.3	UG/L	ND	ND	ND	ND
1,2,4-trichlorobenzene		UG/L	ND	ND	ND	ND
Methyl Iodide	.6	UG/L	ND	ND	ND	ND
Chloroprene	.4	UG/L	ND	ND	ND	ND
Methyl methacrylate	.8	UG/L	ND	ND	ND	ND
2-nitropropane	12	UG/L	ND	ND	ND	ND
1,2-dibromoethane	.3	UG/L	ND	ND	ND	ND
Isopropylbenzene	.3	UG/L	ND	ND	ND	ND
Benzyl chloride	1.1	UG/L	ND	ND	ND	ND
ortho-xylene	.4	UG/L	ND	ND	ND	ND
Acetone	4.5	UG/L	827.0	834.0	716.0	324.0
Carbon disulfide		UG/L	1.5	2.0	2.8	2.3
2-butanone		UG/L	ND	8.0	7.4	7.5
Methyl tert-butyl ether	.4	UG/L	ND	ND	ND	ND

ND= not detected, NA= not analyzed, NS= not sampled
* =Blank did not meet QC criteria; Analyte above MDL. Methylene chloride levels 0.36, 0.72, and 0.73 ug/L in blank in Feb, May, and Oct respectively.

POINT LOMA WASTEWATER TREATMENT PLANT Annual Monitoring Report

2009

Priority Pollutants Purgeable Compounds, EPA Method 624

			N34-REC WATER 03-FEB-2009	N34-REC WATER 05-MAY-2009	N34-REC WATER 04-AUG-2009	N34-REC WATER 06-OCT-2009
Analyte		Units	P458425	P468709	P481238	P490510
	=== .5	===== UG/L	ND	ND	ND	1 0
Bromomethane	.7	UG/L	ND ND	ND ND	ND ND	1.0 ND
Vinyl chloride	.4	UG/L	ND ND	ND ND	ND ND	ND ND
Chloroethane	.9	UG/L	ND ND	ND ND	ND ND	ND ND
1,1-dichloroethane	.4	UG/L	ND ND	ND ND	ND ND	ND ND
Trichlorofluoromethane	.3	UG/L	ND	ND ND	ND ND	ND ND
Methylene chloride	.3	UG/L	0.5*	0.4	0.5	1.2*
1,1-dichloroethene	.4	UG/L	ND	ND	ND	ND
trans-1,2-dichloroethene	.6	UG/L	ND	ND	ND	ND
Chloroform	. 2	UG/L	83.4	56.1	45.9	96.2
1,2-dichloroethane	.5	UG/L	ND	ND	ND	ND
1,1,1-trichloroethane	.4	UG/L	ND	ND	ND	ND
Carbon tetrachloride	.4	UG/L	ND	ND	ND	ND
Bromodichloromethane	.5	UG/L	52.7	35.7	35.1	74.3
1,2-dichloropropane	.3	UG/L	ND	ND	ND	ND
trans-1,3-dichloropropene	.5	UG/L	ND	ND	ND	ND
Trichloroethene	.7	UG/L	ND	ND	ND	ND
Benzene	.4	UG/L	ND	ND	ND	ND
Dibromochloromethane	.6	UG/L	29.4	14.7	24.1	43.3
1,1,2-trichloroethane	.5	UG/L	ND	ND	ND	ND
cis-1,3-dichloropropene	.3	UG/L	ND	ND	ND	ND
2-chloroethylvinyl ether		UG/L	ND	ND	ND	ND
Bromoform	.5	UG/L	2.9	5.1	3.7	6.2
1,1,2,2-tetrachloroethane	.5	UG/L	ND	ND	ND	ND
Tetrachloroethene		UG/L	1.3	ND	ND	ND
Chlorobenzene	.4	UG/L	ND	ND	ND	ND
Toluene	.4	UG/L	ND	ND	ND	ND
Ethylbenzene	.3	UG/L	ND	ND	ND	ND
Acrylonitrile	.7	UG/L	ND	ND	ND	ND
Acrolein		UG/L	ND	ND	ND	ND
1,2-dichlorobenzene	.4	UG/L	ND	ND	ND	ND
1,4-dichlorobenzene	.4	UG/L	ND	ND	1.3	ND
1,3-dichlorobenzene	.5	UG/L	ND ND	ND ND	ND ND	ND ND
Dichlorodifluoromethane		UG/L	ND	ND ======	ND ======	ND ======
Halomethane Purgeable Cmpnds		UG/L	85.0	55.5	62.9	124.8
Purgeable Compounds		UG/L	169.7	112.0	109.3	221.0
======================================						221.0
Total Dichlorobenzenes	.5	UG/L	0.0	0.0	1.3	0.0
Additional analytes determine	-					
Allyl chlonido	=== .6		ND	ND	ND	ND
Allyl chloride		UG/L UG/L	ND ND	ND ND	ND ND	ND ND
4-methyl-2-pentanone meta,para xylenes	.6	UG/L	ND ND	ND ND	ND ND	ND ND
Styrene	.3	UG/L	ND ND	ND ND	ND ND	ND ND
1,2,4-trichlorobenzene	.7	UG/L	ND ND	ND ND	ND ND	ND ND
Methyl Iodide	.6	UG/L	ND ND	ND ND	ND ND	ND ND
Chloroprene	.4	UG/L	ND	ND	ND	ND
Methyl methacrylate	.8	UG/L	ND	ND	ND	ND
2-nitropropane	12	UG/L	ND	ND	ND	ND
1,2-dibromoethane	.3	UG/L	ND	ND	ND	ND
Isopropylbenzene	.3	UG/L	ND	ND	ND	ND
Benzyl chloride		UG/L	ND	ND	ND	ND
ortho-xylene	.4	UG/L	ND	ND	ND	ND
Acetone		UG/L	5.7	6.5	ND	68.4
Carbon disulfide		UG/L	ND	ND	ND	ND
2-butanone		UG/L	ND	ND	ND	ND
Methyl tert-butyl ether	.4	UG/L	ND	ND	ND	ND

ND= not detected, NA= not analyzed, NS= not sampled

^{* =}Blank did not meet QC criteria; Analyte above MDL. Methylene chloride levels 0.36, 0.72, and 0.73 ug/L in blank in Feb, May, and Oct respectively.